EVERY SPIN-1/2 SPINOR IS AN EIGENKET OF SOME SPIN
OPERATOR
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[If some equations are too small to read easily, use your browser’s mag-
nifying option (Ctrl + on Chrome, probably something similar on other
browsers). |

The eigenvectors of the spin % matrix in an arbitrary direction are given
by
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where the direction vector is given by
f = sinf cos ¢X + sinf sin oy + cos HZ 3)
The corresponding spin operator is given by the matrix
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Any 2-component normalized spinor is an eigenvector of such a matrix.
To see this, suppose we have an arbitrary spinor written as
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where p; > and ¢y > are arbitrary real numbers (so that the coefficients on
the RHS are arbitrary complex numbers). From normalization we have
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Thus we can write p; and p, as the sine and cosine of some angle, which

we’ll call %, giving
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We can put this in the form [I] as follows. Since an overall phase doesn’t
affect the physics of the spinor, we can write
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We have the conditions
o1 = (1—-§ (10)
¢ = <1+-§ (1T)
Solving, we get
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Thus |x) as given by [6]is an eigenvector of the operator 4] where

i =sinfcos (¢ — ¢1)X+sinfsin (py — @)y + cos bz (15)



