EVERY SPIN-1/2 SPINOR IS AN EIGENKET OF SOME SPIN OPERATOR

Link to: physicspages home page.

To leave a comment or report an error, please use the auxiliary blog.

Shankar, R. (1994), *Principles of Quantum Mechanics*, Plenum Press. Chapter 14, Exercise 14.3.1.

[If some equations are too small to read easily, use your browser's magnifying option (Ctrl + on Chrome, probably something similar on other browsers).]

The eigenvectors of the spin $\frac{1}{2}$ matrix in an arbitrary direction are given by

$$|\hat{n}+\rangle = \begin{bmatrix} \cos\frac{\theta}{2}e^{-i\phi/2} \\ \sin\frac{\theta}{2}e^{i\phi/2} \end{bmatrix}$$
 (1)

$$|\hat{n}-\rangle = \begin{bmatrix} -\sin\frac{\theta}{2}e^{-i\phi/2} \\ \cos\frac{\theta}{2}e^{i\phi/2} \end{bmatrix}$$
 (2)

where the direction vector is given by

$$\hat{\mathbf{n}} = \sin\theta\cos\phi\hat{\mathbf{x}} + \sin\theta\sin\phi\hat{\mathbf{y}} + \cos\theta\hat{\mathbf{z}} \tag{3}$$

The corresponding spin operator is given by the matrix

$$\hat{\mathbf{n}} \cdot \mathbf{S} = \frac{\hbar}{2} \begin{bmatrix} \cos \theta & \sin \theta e^{-i\phi} \\ \sin \theta e^{i\phi} & -\cos \theta \end{bmatrix}$$
 (4)

Any 2-component normalized spinor is an eigenvector of such a matrix. To see this, suppose we have an arbitrary spinor written as

$$|\chi\rangle = \rho_1 e^{i\phi_1} \begin{bmatrix} 1\\0 \end{bmatrix} + \rho_2 e^{i\phi_2} \begin{bmatrix} 0\\1 \end{bmatrix}$$
 (5)

$$= \begin{bmatrix} \rho_1 e^{i\phi_1} \\ \rho_2 e^{i\phi_2} \end{bmatrix} \tag{6}$$

where $\rho_{1,2}$ and $\phi_{1,2}$ are arbitrary real numbers (so that the coefficients on the RHS are arbitrary complex numbers). From normalization we have

$$\langle \chi | \chi \rangle = 1 = \begin{bmatrix} \rho_1 e^{-i\phi_1} & \rho_2 e^{-i\phi_2} \end{bmatrix} \begin{bmatrix} \rho_1 e^{i\phi_1} \\ \rho_2 e^{i\phi_2} \end{bmatrix} = \rho_1^2 + \rho_2^2$$
 (7)

Thus we can write ρ_1 and ρ_2 as the sine and cosine of some angle, which we'll call $\frac{\theta}{2}$, giving

$$|\chi\rangle = \begin{bmatrix} \cos\frac{\theta}{2}e^{i\phi_1} \\ \sin\frac{\theta}{2}e^{i\phi_2} \end{bmatrix} \tag{8}$$

We can put this in the form 1 as follows. Since an overall phase doesn't affect the physics of the spinor, we can write

$$|\chi\rangle = e^{i\alpha} \begin{bmatrix} \cos\frac{\theta}{2}e^{-i\phi/2} \\ \sin\frac{\theta}{2}e^{i\phi/2} \end{bmatrix} = \begin{bmatrix} \cos\frac{\theta}{2}e^{i\phi_1} \\ \sin\frac{\theta}{2}e^{i\phi_2} \end{bmatrix}$$
(9)

We have the conditions

$$\phi_1 = \alpha - \frac{\phi}{2} \tag{10}$$

$$\phi_2 = \alpha + \frac{\phi}{2} \tag{11}$$

Solving, we get

$$\alpha = \frac{\phi_1 + \phi_2}{2}$$

$$\phi = \phi_2 - \phi_1$$
(12)
$$(13)$$

$$\phi = \phi_2 - \phi_1 \tag{13}$$

giving

$$|\chi\rangle = e^{i(\phi_1 + \phi_2)/2} \begin{bmatrix} \cos\frac{\theta}{2}e^{-i(\phi_2 - \phi_1)/2} \\ \sin\frac{\theta}{2}e^{i(\phi_2 - \phi_1)/2} \end{bmatrix}$$
 (14)

Thus $|\chi\rangle$ as given by 6 is an eigenvector of the operator 4, where

$$\hat{\mathbf{n}} = \sin\theta\cos(\phi_2 - \phi_1)\hat{\mathbf{x}} + \sin\theta\sin(\phi_2 - \phi_1)\hat{\mathbf{y}} + \cos\theta\hat{\mathbf{z}}$$
 (15)