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[If some equations are too small to read easily, use your browser’s mag-

nifying option (Ctrl + on Chrome, probably something similar on other
browsers).]

When we add two spins (or angular momenta) in quantum mechanics,
we can express the states in one of two ways. The first is in the vector space
which is the direct product of the two spaces for the two spins. This is called
the product space and formally is

Vp = V1⊗V2 (1)

where Vi is the vector space of the single spin i. If we’re interested in the
total spin J = J1 + J2, we could also use the total-j vector space, which is
the direct sum of the two spin spaces:

Vt = V1⊕V2 (2)

As each space is complete, we can express any state in terms of a basis
from either space. We’ve seen an example of this when adding two spin-1

2
systems.

In general, if we have two angular momenta J1 and J2, we would like
to be able to write a state in one space as a linear combination of states
from the other space. The Clebsch-Gordan coefficients allow us to this.
Calculating the C-G coefficients in general is quite complicated, but for
systems with small spins or angular momenta, Shankar gives a method that
is simpler than the more tedious brute-force method. We ground through
one of these brute-force calculations earlier for the addition of spin-1

2 and
another, arbitrary, spin.

In this post, we’ll work through Shankar’s method for the explicit case of
adding spin-1

2 and spin-1 so you can see how the calculations are done.
We have two sets of kets. In the product space, each ket is labelled by the

two spins and their z components, as in

Vp = {|j1m1;j2m2〉} (3)
1
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The curly brackets here represent the set of all kets of form |j1m1;j2m2〉
where ji is the value (in units of h̄) of spin Ji and mi is its z component.

In the total-j space Vt, the labels are the total spin j, its z component m
and the two component spins j1 and j2:

Vt = {|jmj1j2〉} (4)

To work out the linear combinations, we start with the state where both
j and m are maximum, which occurs when m1 = j1 and m2 = j2, which
gives j = j1 + j2 and m = j1 + j2. There is only one member of the set 3
satisfying this condition, so we begin by stating that

|(j1 + j2)(j1 + j2)j1j2〉= |j1j1;j2j2〉 (5)

To get states with lower values ofm but the same value of j, we can apply
the lowering operator J− to the LHS of 5 and its equivalent in the product
space, which is J1−+J2−, to the RHS. We use the formula

J± |jmj1j2〉= h̄
√

(j∓m)(j±m+1) |j (m−1)j1j2〉 (6)

Shankar gives the details of this calculation in the general case; here we’ll
apply it to j1 = 1 and j2 =

1
2 . We begin with the top state, where j = 1+ 1

2 =
3
2 and m= 3

2 : ∣∣∣∣32 3
2

1
1
2

〉
t

=

∣∣∣∣11;
1
2

1
2

〉
p

(7)

In what follows, to simplify the notation, we’ll omit j1j2 from the total-j
kets (since they are always 11

2 ) and also omit j1 and j2 from the product
kets (again, because they are always 1 and 1

2 ). We’ll use a subscript t for a
total-j ket and p for a product space ket. In this notation 7 is∣∣∣∣32 3

2

〉
t

=

∣∣∣∣11
2

〉
p

(8)

Now we apply the lowering operator to both sides. On the LHS, we have

J−

∣∣∣∣32 3
2

〉
t

= h̄

√(
3
2
+

3
2

)(
3
2
− 3

2
+1
)∣∣∣∣32 1

2

〉
t

(9)

=
√

3h̄
∣∣∣∣32 1

2

〉
t

(10)

On the RHS, we have (remember that J1− operates only on spin 1 and
J2− only on spin 2):
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(J1−+J2−)

∣∣∣∣11
2

〉
p

= h̄
√
(1+1)(1−1+1)

∣∣∣∣01
2

〉
p

+ (11)

h̄

√(
1
2
+

1
2

)(
1
2
− 1

2
+1
)∣∣∣∣1,−1

2

〉
p

(12)

=
√

2h̄
∣∣∣∣01

2

〉
p

+ h̄

∣∣∣∣1,−1
2

〉
p

(13)

Combining 10 and 13, we find∣∣∣∣32 1
2

〉
t

=

√
2
3

∣∣∣∣01
2

〉
p

+
1√
3

∣∣∣∣1,−1
2

〉
p

(14)

To get the next lower value of m, we apply lowering operators again:

J−

∣∣∣∣32 1
2

〉
t

= 2h̄
∣∣∣∣32 ,−1

2

〉
t

(15)

(J1−+J2−)

(√
2
3

∣∣∣∣01
2

〉
p

+
1√
3

∣∣∣∣1,−1
2

〉
p

)
=

√
2
3

√
2h̄
∣∣∣∣−1,

1
2

〉
p

+

(16)√
2
3
h̄

∣∣∣∣0,−1
2

〉
p

+
1√
3

√
2h̄
∣∣∣∣0,−1

2

〉
p

(17)

=
2√
3
h̄

∣∣∣∣−1,
1
2

〉
p

+2

√
2
3
h̄

∣∣∣∣0,−1
2

〉
p

(18)∣∣∣∣32 ,−1
2

〉
t

=
1√
3
h̄

∣∣∣∣−1,
1
2

〉
p

+

√
2
3
h̄

∣∣∣∣0,−1
2

〉
p

(19)

To get the bottom ket, we could apply the lowering operator again, but
it’s easier to notice that there is only one way of getting the state

∣∣3
2 ,−

3
2

〉
t

so we have ∣∣∣∣32 ,−3
2

〉
t

=

∣∣∣∣−1,−1
2

〉
p

(20)

This completes the states with j = 3
2 . There are two total-j states with

j = 1
2 : one withm=+1

2 and the other withm=−1
2 . To get the state

∣∣1
2

1
2

〉
t
,
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we observe that it must be a combination of the product kets
∣∣1,−1

2

〉
p

and∣∣0, 1
2

〉
p
. These are the same two kets that were combined to get

∣∣3
2 ,

1
2

〉
t

in
14. As usual, we’re looking for a mutually orthonormal sets of states, so∣∣1

2
1
2

〉
t

must be orthogonal to
∣∣3

2
1
2

〉
t

and also be normalized. By inspection,
we see that the state must be∣∣∣∣12 1

2

〉
t

=

√
2
3

∣∣∣∣1,−1
2

〉
p

− 1√
3

∣∣∣∣01
2

〉
p

(21)

[Actually, we could multiply this by any phase factor eiα for real α, but
by convention, the coefficients are taken to be real. A further convention
makes the coefficient of the product ket with m1 = j1 positive.]

To get the state
∣∣1

2 ,−
1
2

〉
t

we again use lowering operators:

J−

∣∣∣∣12 1
2

〉
t

= h̄

∣∣∣∣12 ,−1
2

〉
t

(22)

(J1−+J2−)

(√
2
3

∣∣∣∣1,−1
2

〉
p

− 1√
3

∣∣∣∣01
2

〉
p

)
=

√
2
3

√
2h̄
∣∣∣∣0,−1

2

〉
p

−

(23)
√

2√
3
h̄

∣∣∣∣−1,
1
2

〉
p

− 1√
3
h̄

∣∣∣∣0,−1
2

〉
p

(24)

=
h̄√
3

∣∣∣∣0,−1
2

〉
p

−
√

2
3
h̄

∣∣∣∣−1,
1
2

〉
p

(25)∣∣∣∣12 ,−1
2

〉
t

=
1√
3

∣∣∣∣0,−1
2

〉
p

−
√

2
3

∣∣∣∣−1,
1
2

〉
p

(26)

This completes the transformations.
From here, it’s actually not too hard to construct the matrix J2 in the

product basis. We first note that J2 in the total-j basis is diagonal, with the
diagonal entries being the eigenvalues, which are the values of j (j+1) for
the 6 states. If we list the states in the order∣∣∣∣32 3

2

〉
t

,

∣∣∣∣32 1
2

〉
t

,

∣∣∣∣12 1
2

〉
t

,

∣∣∣∣12 − 1
2

〉
t

,

∣∣∣∣32 ,−1
2

〉
t

,

∣∣∣∣32 ,−3
2

〉
t

(27)

then the eigenvalues are 15
4 h̄

2, 15
4 h̄

2, 3
4 h̄

2, 3
4 h̄

2, 15
4 h̄

2, 15
4 h̄

2 so we have
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J2
t =

3h̄2

4


5 0 0 0 0 0
0 5 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 5 0
0 0 0 0 0 5

 (28)

To construct J2
p , we observe that the kets 27 are the eigenvectors of J2 (in

both bases) and we know that the unitary matrix U whose columns are the
normalized eigenvectors of J2

p will diagonalize J2
p . In this case, we already

have the diagonalized form, which is just J2
t , so we know that

UTJ2
pU = J2

t (29)

Since U is unitary, UT = U−1, so we get

J2
p = UJ2

t U
T (30)

Using the eigenvector order given in 27 to order the columns of U , we
have

U =



1 0 0 0 0 0

0 1√
3

√
2
3 0 0 0

0
√

2
3 − 1√

3
0 0 0

0 0 0 1√
3
−
√

2
3 0

0 0 0
√

2
3

1√
3

0
0 0 0 0 0 1


(31)

We can now just do the matrix multiplications (I used Maple, since mul-
tiplying 6×6 matrices is quite tedious), and we find

J2
p = h̄2



15
4 0 0 0 0 0
0 7

4

√
2 0 0 0

0
√

2 11
4 0 0 0

0 0 0 11
4

√
2 0

0 0 0
√

2 7
4 0

0 0 0 0 0 15
4

 (32)

To finish, we return to the general results given by Shankar. First, for
the general state |j1j1;j2j2〉p we can find the total angular momentum by
operating with

http://physicspages.com/pdf/Shankar/MIT 8.05x 06.05.01 Diagonalization of matrices.pdf
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J2 = J2
1 +J

2
2 +2J1zJ2z+J1+J2−+J1−J2+ (33)

[This formula was derived earlier.] Since the state |j1j1;j2j2〉p has max-
imum values for m1 and m2, operating with J1+ or J2+ will give zero.
Therefore

J2 |j1j1;j2j2〉p =
(
J2

1 +J
2
2 +2J1zJ2z

)
|j1j1;j2j2〉p (34)

= [j1 (j1 +1)+ j2 (j2 +1)+2m1m2] h̄
2 |j1j1;j2j2〉p (35)

= [j1 (j1 +1)+ j2 (j2 +1)+2j1j2] h̄
2 |j1j1;j2j2〉p (36)

= [(j1 + j2)(j1 + j2 +1)] h̄2 |j1j1;j2j2〉p (37)

Thus the total j value is j = j1 + j2.
The second exercise is a bit messier, since we’re dealing with the top

ket whose j value is one unit less than the maximum, which is given by
Shankar’s equation 15.2.8.

|j1 + j2−1, j1 + j2−1〉t=
1√

j1 + j2

[√
j1 |j1, j2−1〉p−

√
j2 |j1−1, j2〉p

]
(38)

This time, operating with 33 must include the two terms with raising
operators, so we need to use 6. We’ll deal with these terms first. We note
that operating with J1+ on the first term in 38 gives zero, since m1 = j1,
and similarly for J2+on the second term. We’re left with

J1+J2− |j1−1, j2〉p =
√

2j2h̄J1+ |j1−1, j2−1〉p (39)

=
√

2j2h̄
2
√

2j1 |j1, j2−1〉p (40)

= 2
√
j1j2h̄

2 |j1, j2−1〉p (41)

J1−J2+ |j1, j2−1〉p = 2
√
j1j2h̄

2 |j1−1, j2〉p (42)

Combining these two results in 38 we have, for these terms

(J1+J2−+J1−J2+)
[√

j1 |j1, j2−1〉p−
√
j2 |j1−1, j2〉p

]
= (43)

2j1
√
j2h̄

2 |j1−1, j2〉p−2j2
√
j1h̄

2 |j1, j2−1〉p (44)

Now for the first 3 terms in 33. First, we apply them to the first term in
38:

(
J2

1 +J
2
2 +2J1zJ2z

)√
j1 |j1, j2−1〉p =

√
j1h̄

2 [j1 (j1 +1)+ j2 (j2 +1)+2j1 (j2−1)] |j1, j2−1〉p(45)

http://physicspages.com/pdf/Shankar/Shankar Exercises 15.01.01.pdf
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Combining this with 44 we get the coefficient of |j1, j2−1〉p to be√
j1h̄

2 [j1 (j1 +1)+ j2 (j2 +1)+2j1 (j2−1)−2j2] = (46)√
j1h̄

2 [(j1 + j2−1)(j1 + j2)] (47)

Now we apply
(
J2

1 +J
2
2 +2J1zJ2z

)
to the second term in 38:

−
(
J2

1 +J
2
2 +2J1zJ2z

)√
j2 |j1−1, j2〉p=−

√
j2h̄

2 [j1 (j1 +1)+ j2 (j2 +1)+2(j1−1)j2] |j1−1, j2〉p
(48)

Again, combining this with 44 we get the coefficient of |j1−1, j2〉p to be

−
√
j2h̄

2 [j1 (j1 +1)+ j2 (j2 +1)+2(j1−1)j2−2j1] = (49)

−
√
j2h̄

2 [(j1 + j2−1)(j1 + j2)] (50)

Thus the net result of operating on 38 with J2 is to multiply by (j1 + j2−1)(j1 + j2),
this state has angular momentum j1 + j2−1.
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