PROJECTION OPERATORS FOR GENERAL L + SPIN-1/2

Link to: physicspages home page.

To leave a comment or report an error, please use the auxiliary blog.

We can generalize the calculation made earlier where we found the projection operators that project an arbitrary vector onto the spin-1 and spin-0 subspaces of the space where two spin-$\frac{1}{2}$ systems are added. Here, we’ll consider adding a spin-$\frac{1}{2}$ system to a system with an arbitrary orbital angular momentum L. In our earlier calculation, we found that the projection operators for adding two spin-$\frac{1}{2}$ systems are

\[
P_1 = \frac{3}{4} I + \frac{1}{\hbar^2} S_1 \cdot S_2
\]

\[
P_2 = \frac{1}{4} I - \frac{1}{\hbar^2} S_1 \cdot S_2
\]

In the more general case, we’ll assume that the projection operators have the forms

\[
P_+ = a I + \frac{b}{\hbar^2} L \cdot S
\]

\[
P_- = c I + \frac{d}{\hbar^2} L \cdot S
\]

where the constants a, b, c and d are to be determined. The operator P_+ should project a vector onto the $j = l + \frac{1}{2}$ subspace and P_- should project onto the $j = l - \frac{1}{2}$ subspace. Consider P_+ first. We must therefore have

\[
P_+ \left| l + \frac{1}{2} \right\rangle = \left| l + \frac{1}{2} \right\rangle
\]

First, we need a useful identity:

\[
J^2 = (L + S)^2 = L^2 + S^2 + 2 L \cdot S
\]

\[
L \cdot S = \frac{1}{2} (J^2 - L^2 - S^2)
\]

Inserting we have
\[\mathbb{P}_+ \left| l + \frac{1}{2} \right\rangle = \left(aI + \frac{b}{\hbar^2} \mathbf{L} \cdot \mathbf{S} \right) \left| l + \frac{1}{2} \right\rangle \]
(8)

\[= (a + b[j (j + 1) - l (l + 1) - s (s + 1)]) \left| l + \frac{1}{2} \right\rangle \]
(9)

\[= \left(a + b \left[\left(l + \frac{1}{2} \right) \left(l + \frac{3}{2} \right) - l (l + 1) - \frac{3}{4} \right] \right) \left| l + \frac{1}{2} \right\rangle \]
(10)

\[= \left(a + \frac{bl}{2} \right) \left| l + \frac{1}{2} \right\rangle \]
(11)

Operating with \(\mathbb{P}_+ \) on the state \(\left| l - \frac{1}{2} \right\rangle \) must give zero, since this state is orthogonal to \(\left| l + \frac{1}{2} \right\rangle \), so

\[\mathbb{P}_+ \left| l - \frac{1}{2} \right\rangle = 0 \]
(12)

We therefore have

\[\mathbb{P}_+ \left| l - \frac{1}{2} \right\rangle = \left(aI + \frac{b}{\hbar^2} \mathbf{L} \cdot \mathbf{S} \right) \left| l - \frac{1}{2} \right\rangle \]
(13)

\[= (a + b[j (j + 1) - l (l + 1) - s (s + 1)]) \left| l - \frac{1}{2} \right\rangle \]
(14)

\[= \left(a + b \left[\left(l - \frac{1}{2} \right) \left(l + \frac{1}{2} \right) - l (l + 1) - \frac{3}{4} \right] \right) \left| l - \frac{1}{2} \right\rangle \]
(15)

\[= \left(a - \frac{b(l + 1)}{2} \right) \left| l - \frac{1}{2} \right\rangle \]
(16)

We thus have the two equations

\[a + \frac{bl}{2} = 1 \]
(17)

\[a - \frac{b(l + 1)}{2} = 0 \]
(18)

Solving these, we find

\[a = \frac{l + 1}{2l + 1} \]
(19)

\[b = \frac{2}{2l + 1} \]
(20)

The projection operator is therefore
\[\mathbb{P}_+ = \frac{1}{2l+1} \left((l+1) I + \frac{2}{\hbar^2} \mathbf{L} \cdot \mathbf{S} \right) \] \hspace{1cm} (21)

We can follow the same procedure to find \(\mathbb{P}_- \). This yields the same results when we operate on the two states \(|l + \frac{1}{2}\rangle \) and \(|l - \frac{1}{2}\rangle \), with \(a \) replaced by \(c \) and \(b \) by \(d \), but now we require that

\[\mathbb{P}_- |l + \frac{1}{2}\rangle = 0 \] \hspace{1cm} (22)

\[\mathbb{P}_- |l - \frac{1}{2}\rangle = |l - \frac{1}{2}\rangle \] \hspace{1cm} (23)

This gives us the equations

\[c + \frac{dl}{2} = 0 \] \hspace{1cm} (24)

\[c - \frac{d(l+1)}{2} = 1 \] \hspace{1cm} (25)

with solutions

\[c = \frac{l}{2l+1} \] \hspace{1cm} (26)

\[d = -\frac{2}{2l+1} \] \hspace{1cm} (27)

Thus the projection operator is

\[\mathbb{P}_- = \frac{1}{2l+1} \left(I - \frac{2}{\hbar^2} \mathbf{L} \cdot \mathbf{S} \right) \] \hspace{1cm} (28)

As a check we see that (21) and (28) reduce to the correct forms (1) and (2) when \(l = \frac{1}{2} \).