A spherical tensor operator is defined to be an object T^q_k with integer indices q and k. The rank of the tensor is k, and the other index q ranges in integer steps from $-k$ to $+k$, giving $T_k^q 2k + 1$ components. Its definition includes a requirement that it transform under a rotation according to

$$ U[R] T^q_k U^\dagger[R] = \sum_{q'} D^{(k)}_{q'q} T^{q'}_k $$

where $D^{(k)}$ is the k-th block in the block diagonal matrix formed from the angular momentum operators J. For a rotation through an angle θ about an axis \(\hat{\theta} \), we have

$$ D^{(k)} [R(\theta)] = \sum_{n=0}^{\infty} \frac{1}{n!} \left(-\frac{i\theta}{\hbar} \right)^n \left(\hat{\theta} \cdot J^{(k)} \right)^n $$

where $J^{(k)}$ is the angular momentum vector obtained from the k-th block in each of J_x, J_y and J_z (see Shankar section 12.5 for details).

The series can be written in closed form for some small values of k, but we won’t need these forms here.

For a set of angular momentum kets $|kq\rangle$ (Shankar changes the notation here, in that $|kq\rangle$ refers to a state with total angular momentum number k and z component q, rather than the more familiar $|jm\rangle$), the matrix elements of $D^{(k)}$ are

$$ D^{(k)}_{q'q} = \langle kq' | U[R] | kq \rangle $$

Note that

$$ \langle k'q' | U[R] | kq \rangle = D^{(k)}_{q'q} \delta_{k'k} $$

This follows because a rotation cannot change the total angular momentum of a state, so $U[R] |kq\rangle$ will always result in a state whose total angular momentum number is also k. From this fact, we can write the rotation of an angular momentum ket as
SPHERICAL TENSOR OPERATORS; COMMUTATORS

\[U [R] |kq\rangle = \sum_{k'} \sum_{q'} |k'q'\rangle \langle k'q' | U [R] |kq\rangle \]
\[= \sum_{k'} \sum_{q'} |k'q'\rangle D^{(k)}_{q'q} \delta_{k'k} \]
\[= \sum_{q'} D^{(k)}_{q'q} |kq'\rangle \]

(5)

(6)

(7)

Comparing this result with (1) we see that a passive transformation of the tensor operator \(T^q_k \) works in the same way as a rotation of an angular momentum eigenstate \(|kq\rangle\).

We can use (1) to work out the commutators of \(T^q_k \) with the components of the angular momentum operator \(J \). We use the fact that angular momentum is the generator of rotations and consider an infinitesimal rotation \(\delta\theta \) about, say, the \(x \) axis. In this case, working to first order in \(\delta\theta \):

\[U [R] = I - \frac{i\delta\theta J_x}{\hbar} \]
\[U^\dagger [R] = I + \frac{i\delta\theta J_x}{\hbar} \]
\[U [R] T^q_k U^\dagger [R] = \left(I - \frac{i\delta\theta J_x}{\hbar} \right) T^q_k \left(I + \frac{i\delta\theta J_x}{\hbar} \right) \]
\[= T^q_k - \frac{i\delta\theta}{\hbar} [J_x, T^q_k] \]

(8)

(9)

(10)

(11)

On the RHS of (11) we can use (3) to first order in \(\delta\theta \):

\[D^{(k)}_{q'q} T^q_k = \langle kq' | I - \frac{i\delta\theta J_x}{\hbar} | kq \rangle T^q_k \]
\[= \langle kq' | kq \rangle T^q_k - \frac{i\delta\theta}{\hbar} \langle kq' | J_x | kq \rangle T^q_k \]
\[= T^q_k - \frac{i\delta\theta}{\hbar} \langle kq' | J_x | kq \rangle T^q_k \]

(12)

(13)

(14)

Combining the last two results, we have

\[[J_x, T^q_k] = \sum_{q'} \langle kq' | J_x | kq \rangle T^q_k \]

(15)

We could do the same analysis for the \(y \) and \(z \) components, and we’d get the same result, so we have
We can simplify the last equation, since the ket $|kq\rangle$ is an eigenket of J_z with eigenvalue $q\hbar$. We therefore have

$$\sum_{q'} \langle kq' | J_z | kq \rangle T_{q'}^{q} = \sum_{q'} \langle kq' | kq \rangle \hbar q T_{q'}^{q} = \hbar q T_{k}^{q}$$

To deal with the other two components, we can combine the results in 15 and 16 and use the raising and lowering operators

$$J_{\pm} = J_x \pm iJ_y$$

$$J_{\pm} |kq\rangle = \hbar \sqrt{(k \mp q)(k \pm q + 1)} |k, q \pm 1\rangle$$

We have

$$[J_{\pm}, T_{k}^{q}] = \sum_{q'} \langle kq' | J_{\pm} | kq \rangle T_{q'}^{q}$$

$$= \hbar \sqrt{(k \mp q)(k \pm q + 1)} \sum_{q'} \langle kq' | k, q \pm 1 \rangle T_{q'}^{q}$$

$$= \hbar \sqrt{(k \mp q)(k \pm q + 1)} T_{k}^{q \pm 1}$$

where we’ve again used the orthogonality of the eigenkets to get the last line.

Example. Suppose we construct a spherical tensor out of the components of a vector operator V so that we have a rank 1 tensor given by

$$T_{i}^{\pm 1} = \frac{\mp V_x \pm iV_y}{\sqrt{2}}$$

$$T_{i}^{0} = V_z$$

Vector operators obey the commutation rules

$$[V_i, J_j] = i\hbar \sum_k \varepsilon_{ijk} V_k$$

Applying this gives us, for example
$$[T^1_1, J_x] = -\frac{1}{\sqrt{2}} ([V_x, J_x] + i [V_y, J_x])$$
$$= -\frac{1}{\sqrt{2}} (0 + \hbar V_z)$$
$$= -\hbar \frac{V_z}{\sqrt{2}}$$
$$[T^1_1, J_y] = -\frac{1}{\sqrt{2}} ([V_x, J_y] + i [V_y, J_y])$$
$$= -\frac{1}{\sqrt{2}} (i \hbar V_z + 0)$$
$$= -i \hbar \frac{V_z}{\sqrt{2}}$$

Combining these results, we have

$$[T^1_1, J_+] = [T^1_1, J_x] + i [T^1_1, J_y]$$
$$= -\hbar \frac{V_z}{\sqrt{2}} + \hbar \frac{V_z}{\sqrt{2}}$$
$$= 0$$

This agrees with 24 with $k = q = 1$.

We also have

$$[T^1_1, J_-] = [T^1_1, J_x] - i [T^1_1, J_y]$$
$$= -\hbar \frac{V_z}{\sqrt{2}} - \hbar \frac{V_z}{\sqrt{2}}$$
$$= -\sqrt{2} \hbar V_z$$
$$= -\sqrt{2} \hbar T^0_1$$

This also agrees with 24 with $k = q = 1$ (since $[T^1_1, J_-] = -[J_-, T^1_1]$).

We can do similar calculations to find that

$$[T^{-1}_1, J_+] = -\sqrt{2} \hbar T^0_1$$
$$[T^{-1}_1, J_-] = 0$$

Finally, we have
\[[T^1_1, J_z] = -\frac{1}{\sqrt{2}} ([V_x, J_z] + i [V_y, J_z]) \] \hspace{1cm} (43)

\[= -\frac{1}{\sqrt{2}} (-i\hbar V_y - \hbar V_x) \] \hspace{1cm} (44)

\[= \frac{\hbar}{\sqrt{2}} (V_x + iV_y) \] \hspace{1cm} (45)

\[= -\hbar T^1_1 \] \hspace{1cm} (46)

\[[J_z, T^1_1] = \hbar T^1_1 \] \hspace{1cm} (47)

which is again consistent with 19 with \(q = 1 \). Similar calculations can be done to verify the other commutation relations.