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Section 15.3; Exercise 15.3.3.
The Wigner-Eckart theorem says that for any spherical tensor operator

T q1 we can write its matrix elements in the basis of angular momentum
eigenstates |αlm〉 as a product of two factors:

〈
α2j2m2

∣∣T qk ∣∣α1j1m1
〉
= 〈α2j2 ||Tk||α1j1〉〈j2m2 |kq,j1m1 〉 (1)

where the first factor on the RHS is the reduced matrix element, and is
independent of m1,m2 and the tensor index q. Our earlier example went
through the calculation for the position operator Rq1, and this involved inte-
grals over spatial coordinates. The theorem also applies to cases where the
matrix elements depend only on angular momentum parameters.

First, we’ll look at the rank-1 tensor Jq1 which represents total angular
momentum. The tensor components are

J±1
1 =∓

Jx± iJy√
2

=∓ J±√
2

(2)

J0
1 = Jz (3)

where J± are the usual raising and lowering operators.
According to 1, we can write the matrix elements as

〈
α2j2m2

∣∣Jq1 ∣∣α1j1m1
〉
= 〈α2j2 ||J1||α1j1〉〈j2m2 |1q,j1m1 〉 (4)

Since the factor 〈α2l2 ||J1||α1l1〉 does not depend on q, the equation must
be true for the case q = 0, so the LHS becomes

〈
α2j2m2

∣∣J0
1
∣∣α1j1m1

〉
= 〈α2j2m2 |Jz|α1j1m1〉 (5)

=m1h̄〈α2j2m2 |α1j1m1 〉 (6)
=m1h̄δα2α1δj2j1δm2m1 (7)

where the δs arise because the kets are orthonormal. Now suppose that
we take m1 =m2 = j1 = j, and we use the hint given by Shankar that
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〈jj |jj,10〉=

√
j

j+1
(8)

Then, from 4 we have

〈α2j2 ||J1||α1j1〉=
〈
α2j2j

∣∣J0
1

∣∣α1jj
〉

〈jj |jj,10〉
(9)

= h̄jδα2α1δj2j

√
j+1
j

(10)

=
√
j (j+1)h̄δα2α1δj2j (11)

Now suppose we consider a more general case where the tensor operator
is J ·A, where A is some arbitrary vector. We’ve seen earlier that the scalar
product of two vectors can be written as

J ·A = ∑
q=±1,0

(−1)q Jq1A
−q
1 (12)

where the tensors in the sum on the RHS are formed the same way as in
2. Writing out this sum gives the hint in Shankar’s question, which is that
we can write the scalar product as

J ·A = JzAz+
1
2
(J−A++J+A−) (13)

In what follows, we’ll also need the fact that

J†
± = J∓ (14)

J†
z = Jz (15)

and that

J± |α,j,m〉= h̄
√
(j∓m)(j±m+1) |α,j,m±1〉 (16)

Now let’s take the matrix element of J ·A, although this time things are
made a bit easier since we take j2 = j1 = j, so the total angular momentum
is the same in all matrix elements. We have
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〈
α′jm′ |J ·A|αjm

〉
=
〈
α′jm′ |JzAz|αjm

〉
+ (17)

1
2
(〈
α′jm′ |J−A+|αjm

〉
+
〈
α′jm′ |J+A−|αjm

〉)
(18)

=
〈
Jzα

′jm′ |Az|αjm
〉
+ (19)

1
2
(〈
J+α

′jm′ |A+|αjm
〉
+
〈
J−α

′jm′ |A−|αjm
〉)

(20)

=m′h̄
〈
α′jm′ |Az|αjm

〉
+ (21)

h̄

2

(√
(j−m′)(j+m′+1)

〈
α′j,m′+1 |A+|αjm

〉
+

(22)√
(j+m′)(j−m′+1)

〈
α′j,m′−1 |A−|αjm

〉)
(23)

From 2, we have that A+ =−
√

2A1
1, A− =

√
2A−1

1 and Az = A0
1, so we

have

〈
α′jm′ |J ·A|αjm

〉
=m′h̄

〈
α′jm′

∣∣A0
1
∣∣αjm〉+ (24)

h̄√
2

(
−
√

(j−m′)(j+m′+1)
〈
α′j,m′+1

∣∣A1
1
∣∣αjm〉+

(25)√
(j+m′)(j−m′+1)

〈
α′j,m′−1

∣∣A−1
1

∣∣αjm〉)
(26)

However, from 1 we know that

〈
α′jm′

∣∣Aq1∣∣αjm〉= 〈α′j ||A1||αj
〉〈
jm′ |1q,jm

〉
(27)

where the first factor is the same for all q. Therefore, we can write 24 as

〈
α′jm′ |J ·A|αjm

〉
= c
〈
α′j ||A1||αj

〉
(28)

where
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c=m′h̄
〈
jm′ |10, jm

〉
+ (29)

h̄√
2

(√
(j+m′)(j−m′+1)

〈
j,m′−1 |1,−1, jm

〉
− (30)√

(j−m′)(j+m′+1)
〈
j,m′+1 |11, jm

〉)
(31)

which is independent of α and α′.
To work out c explicitly, we need to find the bracket terms in its expres-

sion. We can do this by going back to 9 with j1 = j2 = j. We have

〈
jm′

∣∣Jq1 ∣∣jm〉= 〈j ||J1||j〉
〈
jm′ |1q,jm

〉
(32)

From 11 we have

〈
jm′ |1q,jm

〉
=

〈
jm′

∣∣Jq1 ∣∣jm〉
h̄
√
j (j+1)

(33)

We can work out the matrix elements
〈
jm′

∣∣Jq1 ∣∣jm〉 by using 2 and the
raising and lowering operators. We get
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〈
jm′ |10, jm

〉
=
〈jm′ |Jz|jm〉
h̄
√
j (j+1)

(34)

=
mh̄

h̄

〈jm′ |jm〉√
j (j+1)

(35)

=
m√

j (j+1)
δmm′ (36)

〈
j,m′−1 |1−1, jm

〉
=

1√
2
〈j,m′−1 |J−|jm〉

h̄
√
j (j+1)

(37)

=
1√
2
〈J+j,m′−1 |jm〉
h̄
√
j (j+1)

(38)

=

√
(j−m′+1)(j+m′)√

2
√
j (j+1)

〈
jm′ |jm

〉
(39)

=

√
(j−m+1)(j+m)√

2
√
j (j+1)

δmm′ (40)

〈
j,m′+1 |11, jm

〉
=− 1√

2
〈j,m′+1 |J+|jm〉

h̄
√
j (j+1)

(41)

=− 1√
2
〈J−j,m′+1 |jm〉
h̄
√
j (j+1)

(42)

=−
√

(j+m′+1)(j−m′)√
2
√
j (j+1)

〈
jm′ |jm

〉
(43)

=−
√

(j+m+1)(j−m)√
2
√
j (j+1)

δmm′ (44)

Putting everything together, we have

c=
h̄δmm′√
j (j+1)

[
m2 +

1
2
(j−m+1)(j+m)+

1
2
(j+m+1)(j−m)

]
(45)

=
h̄δmm′√
j (j+1)

(
j2 + j

)
(46)

= h̄
√
j (j+1)δmm′ (47)

We can combine these results to get an expression for the matrix elements
of Aq1. From 27, 28, 33 and 47 we have
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〈
α′jm′

∣∣Aq1∣∣αjm〉= 〈α′j ||A1||αj
〉〈
jm′ |1q,jm

〉
(48)

=
1
c

〈
α′jm′ |J ·A|αjm

〉〈
jm′ |1q,jm

〉
(49)

=
〈α′jm′ |J ·A|αjm〉

h̄2j (j+1)

〈
jm′

∣∣Jq1 ∣∣jm〉 (50)
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