WIGNER-ECKART THEOREM - EXAMPLES
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Shankar, R. (1994), Principles of Quantum Mechanics, Plenum Press.
Section 15.3; Exercise 15.3.3.

The Wigner-Eckart theorem says that for any spherical tensor operator
qu we can write its matrix elements in the basis of angular momentum
eigenstates |alm) as a product of two factors:

{aajoma | T | crjimi) = (oo || Til| i) (ama lkq, jimy) (D)

where the first factor on the RHS is the reduced matrix element, and is
independent of mj, m, and the tensor index ¢. Our earlier example went
through the calculation for the position operator R, and this involved inte-
grals over spatial coordinates. The theorem also applies to cases where the
matrix elements depend only on angular momentum parameters.

First, we’ll look at the rank-1 tensor qu which represents total angular
momentum. The tensor components are
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where J are the usual raising and lowering operators.
According to 1} we can write the matrix elements as

azjomy |Jy|ajimy) = (aaj2 ||J1]| a11) (J2ma [1g, j1my
Jy (22 ||| e ) (Gama |1 ) @)

Since the factor (a3 || /1 || «11) does not depend on g, the equation must
be true for the case ¢ = 0, so the LHS becomes

{azjoma | JY | arjimi) = (aajoma | .| a1 jim) (%)
= mih (azjamz |y jimy) (6)
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where the Js arise because the kets are orthonormal. Now suppose that

we take m| = my = j; = J, and we use the hint given by Shankar that
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Then, from ] we have
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Now suppose we consider a more general case where the tensor operator
is J- A, where A is some arbitrary vector. We’ve seen earlier that the scalar
product of two vectors can be written as

(g || 1] a1j1) =

J-A= Y (-1)?JlAY (12)
q==%1,0

where the tensors in the sum on the RHS are formed the same way as in
[2l Writing out this sum gives the hint in Shankar’s question, which is that
we can write the scalar product as

1
VA= LA A5 (J AL+ TAL) (13)

In what follows, we’ll also need the fact that

Ji=J= (14)
JI=1J, (15)

and that
Jila,jm) =0/ (GFm) (jEm+1)|a,jm+1) (16)

Now let’s take the matrix element of J - A, although this time things are
made a bit easier since we take j» = 71 = 7, so the total angular momentum
is the same in all matrix elements. We have
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Frorn we have that A, = —v2Al, A = \/iAfl and A, = A9, so we
have

(o' |J- Alagm) = m'h (o jm' | A} ajm) + 24
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However, from [T] we know that

(o jm/ ‘A(f’ ajm) = (/j||A1||aj) (im’|1q,jm ) (27)

where the first factor is the same for all ¢. Therefore, we can write [24] as

(o jm/ 13- Alam) = e{a/j || A1 aj) (28)

where
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which is independent of « and «’.
To work out ¢ explicitly, we need to find the bracket terms in its expres-
sion. We can do this by going back to [0 with j; = j» = j. We have

(! | gm) = G (G 1g, jm) (32

From [11] we have
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We can work out the matrix elements < gm/ |Jf ‘ jm> by using [2| and the
raising and lowering operators. We get
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Putting everything together, we have
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We can combine these results to get an expression for the matrix elements

of AY. From and 47| we have
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(o jm! |AY| ajm) = (/j||A1]|eg) (jm' [1q, jm ) (48)
1
== <a'jm' |J-A|ajm> <jm'|1q,jm> (49)
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