VARIATIONAL PRINCIPLE AND THE DELTA FUNCTION
WELL
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Here we’ll apply the variational principle to the delta function well, with
potential

V =—aVpo (x) (1)
where a and V| are positive constants. As we’ve seen earlier, there is a
single bound state with energy
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[In the earlier treatment, based on Griffiths’s book, V = —a.d (x) for a
positive constant &.] The exact wave function has a discontinuous derivatve
at x = 0, and decays exponentially on both sides of x = 0. To apply the

variational principle, we’ll use a Gaussian as a trial function, so that

y(x) =Ae 3)
for some constants A and b. From normalization, we can find A:
/ y2dx = A / P | 4)
Evaluating the Gaussian integral we have
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This gives
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To apply the variational principle, we need to work out the integral
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We calculate the derivative:
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We therefore have (using Maple to integrate the first term; the delta func-
tion integral is easy)
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We now want the value of b that minimizes the energy, so we take the
derivative
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b — ZaZVozm2 (11
T
Substituting b = by into [0 we get
2y72
ma-V,
Ey=——3" (12)

Comparing this with [2] we see that the variational estimate is

E— gEo ~ 1.57E, (13)

Note that Ej still provides an upper bound on E since the energy is neg-
ative. In this case, the Gaussian estimate isn’t that good.



