Here we’ll apply the variational principle again to the harmonic oscillator, this time with potential

\[\psi(x) = \begin{cases}
(x - a)^2 (x + a)^2 & x \leq |a| \\
0 & |x| > a
\end{cases} \quad (1) \]

Here \(a \) is the parameter to be varied, and we can see that it controls the width of the trial wave function as well as its height. We first find the normalization constant

\[N \equiv \langle \psi | \psi \rangle = \int_{-a}^{a} (x - a)^4 (x + a)^4 \, dx \quad (2) \]

\[= \frac{256}{315} a^9 \quad (3) \]

where I used Maple to do and simplify the integral. If you want to do it by hand, it’s probably easiest to use the substitution \(u = x - a \) before multiplying out the factors in the integrand.

The energy estimate is then obtained by minimizing

\[E = \frac{\langle \psi | H | \psi \rangle}{\langle \psi | \psi \rangle} \quad (4) \]

where the Hamiltonian contains the harmonic oscillator potential:

\[H = -\frac{\hbar^2}{2m} \frac{d^2}{dx^2} + \frac{1}{2} m \omega^2 x^2 \quad (5) \]

To calculate \(\langle \psi | H | \psi \rangle \) requires integrating a sixth-degree polynomial which is straightforward but very tedious to do by hand if you like (which is probably why the exercise is marked as ‘optional’ in Shankar), but again I used Maple to get...
\[\frac{d^2 \psi}{dx^2} = 12x^2 - 4a^2 \]

\[\langle \psi | H | \psi \rangle = \int_{-a}^{a} (x-a)^2 (x+a)^2 \left[\frac{\hbar^2}{2m} (12x^2 - 4a^2) + \frac{1}{2} m \omega^2 x^2 (x-a)^2 (x+a)^2 \right] dx \]

\[= \frac{128}{3465} \left(a^{11} m \omega^2 + 33 \frac{\hbar^2 a^7}{m} \right) \]

The expression to minimize is therefore

\[E = \frac{128}{3465} \left(a^{11} m \omega^2 + 33 \frac{\hbar^2 a^7}{m} \right) \times \frac{315}{256a^9} \]

\[= \frac{1}{22} \left(a^2 m \omega^2 + 33 \frac{\hbar^2}{m} a^{-2} \right) \]

Taking the derivative, we need to solve

\[\frac{dE}{da} = \frac{1}{11} \left(a m \omega^2 - 33 \frac{\hbar^2}{m} a^{-3} \right) = 0 \]

This gives an optimum value for \(a \):

\[a_0 = 33^{1/4} \sqrt{\frac{\hbar}{m \omega}} \]

Substituting into 11, we get the estimate of the ground state energy

\[E_0 = \frac{\sqrt{33}}{11} \hbar \omega \simeq 0.522 \hbar \omega \]

The exact ground state energy for the harmonic oscillator is \(\frac{1}{2} \hbar \omega \) so this estimate is reasonably good.

This answer agrees with the back-of-the-book answer in Shankar, since

\[\frac{\sqrt{33}}{11} = \frac{1}{2} \sqrt{\frac{4 \times 33}{11}} = \frac{1}{2} \sqrt{\frac{12 \times 11}{11}} = \frac{1}{2} \sqrt{\frac{12}{11}} \]