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Thermodynamic systems can be in equilibrium in various ways: thermal

equilibrium results from systems being able to exchange energy, resulting
in them being at the same temperature and mechanical equilibrium results
from being able to exchange volume, resulting in the pressures being equal.
The final type of equilibrium is diffusive equilibrium, when systems can
exchange actual matter (numbers of particles) with each other. Now the
entropy is taken to be a function of energy U , volume V and particle number
N and using the same logic as in deriving temperature and pressure from
derivatives of entropy, we find that at diffusive equilibrium between two
systems A and B with a constant total particle number N =NA+NB , the
condition that entropy achieve its maximum value results in

∂SA
∂NA

=
∂SB
∂NB

(1)

This condition is used to define the chemical potential µ as

µ≡−T
(
∂S

∂N

)
U,V

(2)

If the two systems are also in thermal equilibrium, the temperatures are
equal, so at equilibrium

µA = µB (3)

If the systems are not in equilibrium, then the tendency is for the overall
entropy of the combined system to increase as it tends towards equilibrium.
If ∂SA

∂NA
> ∂SB

∂NB
, then an increase inNA results in a greater increase in entropy

than an increase in NB , so the diffusion will tend to transfer particles from
B to A. From the definition of µ, a larger ∂S

∂N means a lower value of
µ (due to the minus sign), so diffusion tends to transfer particles from the
system with a higher chemical potential to the system with a lower chemical
potential.
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If a system is allowed to vary U , V and N , the overall change in entropy
is the sum of the contributions from all three processes, so the generalized
form of the thermodynamic identity is

dS =

(
∂S

∂U

)
N,V

dU +

(
∂S

∂V

)
U,N

dV +

(
∂S

∂N

)
U,V

dN (4)

or, in its more usual form

dU = TdS−PdV +µdN (5)

Example 1. Consider a very small Einstein solid containing N = 3 oscil-
lators and q = 3 energy quanta. Although true derivatives aren’t valid in
such a small system, we can get an idea of how chemical potential works
by considering what happens if we add another oscillator to the system in
such a way that S and V don’t change. The entropy before the addition is

S = k lnΩ (6)

= k ln
(

3+3−1
3

)
(7)

= k ln10 (8)

If we changeN to 4, then to keep S constant, we need to decrease q. This
example is contrived so that we can actually do this and get the same value
for S, since with N = 4 and q = 2, we find S = k ln10. Thus in this case
∆U = −ε where ε is the energy of a single quantum and so the chemical
potential is (approximately)

µ=
∆U

∆N
=
−ε
1

=−ε (9)

Now suppose we started with N = 3 and q = 4, and then try to add an-
other oscillator while keeping S constant. The entropy before the addition
is

S = k ln
(

3+4−1
4

)
= k ln15 (10)

Reducing q to 3 after increasing N to 4 results in

S = k ln
(

4+3−1
3

)
= k ln20 (11)

so we’re still not down to the original entropy. However, if we reduce q to
2, we get

http://physicspages.com/pdf/Thermal%20physics/Pressure%20in%20terms%20of%20entropy%20-%20the%20thermodynamic%20identity.pdf
http://physicspages.com/pdf/Thermal%20physics/Einstein%20solid.pdf


CHEMICAL POTENTIAL - APPLICATION TO THE EINSTEIN SOLID 3

S = k ln
(

4+2−1
2

)
= k ln10 (12)

so now we’ve dropped below the original entropy. To keep S constant, we’d
need to remove somewhere around 1.5 quanta, so µ <−ε and the chemical
potential is lower (more negative) than in the first case.

Example 2. Still with an Einstein solid, but now at the other extreme where
both q and N are large numbers. In this case, the multiplicity is approxi-
mately

Ω≈

√
N

2πq (q+N)

(
q+N

q

)q(q+N
N

)N

(13)

≈
(
q+N

q

)q(q+N
N

)N

(14)

where we’ve dropped the square root as it is merely ’large’ compared to
the other two factors being ’very large’.

The entropy is therefore

S = k lnΩ (15)

≈ (q+N) ln(q+N)− q lnq−N lnN (16)

Using 2, this gives a chemical potential of

µ=−kT [ln(q+N)+1− lnN −1] (17)

=−kT ln
q+N

N
(18)

For N � q, this reduces to

µ→−kT ln
(

1+
q

N

)
≈−kT q

N
(19)

At the other extreme, N � q and

µ→−kT ln
( q
N

)
→−∞ (20)

In the N � q case, there are many more oscillators than energy quanta
to put in them, so adding an extra oscillator won’t make much difference to
the multiplicity. Think of a simple case where you’ve got lots of bins and
only one ball to put in them. In that case, adding an extra bin creates only
one extra possible state. Thus we’d expect ∂S/∂N to be fairly small in this
case.
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In the N � q case, there are many more quanta than oscillators to put
them in, so adding an extra oscillator creates many more possible microstates,
since we can place any number of quanta from 0 right up to q in the new os-
cillator. Thus the multiplicity, and hence the entropy, increases more rapidly
in this case.
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