BOLOMETRIC MAGNITUDES AND COLOUR INDICES

Link to: physicspages home page.
To leave a comment or report an error, please use the auxiliary blog.
Post date: 16 May 2015.

The bolometric magnitude of a star is the magnitude integrated over the entire electromagnetic spectrum. Since no single measuring instrument is capable of detecting all wavelengths, the bolometric magnitude must be calculated from several measurements on different types of telescope.

A standard set of magnitude values often used is the UBV system (for ultraviolet, blue and visual). A star’s apparent magnitude is measured using narrow-pass filters at three wavelengths:

- M_U, U: the absolute and apparent ultraviolet magnitude, covers 365 ± 34 nm;
- M_B, B: the absolute and apparent blue magnitude, covers 440 ± 49 nm;
- M_V, V: the absolute and apparent visual magnitude, covers 550 ± 44.5 nm.

From these three magnitudes, we can calculate two colour indices, defined as

\[
U - B \text{ index} = U - B = M_U - M_B \\
B - V \text{ index} = B - V = M_B - M_V
\]

(1)

(2)

Since we’re dealing with differences in magnitude, we can use either the apparent or absolute magnitude to calculate the indices. Because the magnitude scale increases for fainter stars, the larger the colour index, the brighter the star in the second-named wavelength. For example, a large $U - B$ index means the star is brighter in the blue region than in the ultraviolet.

The bolometric correction BC is the difference between a star’s bolometric magnitude M_{bol} and its visual magnitude.

\[
BC \equiv m_{bol} - V = M_{bol} - M_V
\]

(3)

Example. For Sirius $V = -1.44$ and $BC = -0.09$ so
Using the distance to Sirius $d = 2.639 \text{ pc}$, we can get its absolute bolometric magnitude

$$M_{bol} = m_{bol} + 5 - 5 \log d$$

For the Sun, $M_{bol} = +4.74$, so Sirius is considerably intrinsically brighter than the Sun. The ratio of luminosities is

$$\frac{L_{Sirius}}{L_{Sun}} = 100\left(\frac{M_{Sun} - M_{Sirius}}{5}\right) = 22.49$$