RELATIVISTIC ACCELERATION IN TERMS OF FORCE

Link to: physicspages home page.
To leave a comment or report an error, please use the auxiliary blog.
Post date: 2 Jun 2015.

Ordinary force in relativity is given by

\[F = \frac{m}{\sqrt{1 - u^2/c^2}} \left[a + \frac{(u \cdot a) u}{c^2 - u^2} \right] \]

(1)

To get a general expression for the acceleration \(a \) in terms of the force, we take the dot product of both sides with the velocity \(u \):

\[u \cdot F = \gamma m (u \cdot a) \left(1 + \frac{u^2}{c^2 - u^2} \right) \]

(2)

\[= \frac{\gamma mc^2 (u \cdot a)}{c^2 - u^2} \]

(3)

\[= \gamma^3 m (u \cdot a) \]

(4)

\[u \cdot a = \frac{u \cdot F}{\gamma^3 m} \]

(5)

Substituting back into (1) we get

\[a = \frac{F}{\gamma m} - \frac{u}{c^2 - u^2} \frac{u \cdot F}{\gamma^3 m} \]

(6)

\[= \frac{F}{\gamma m} - \frac{u}{\gamma mc^2} (u \cdot F) \]

(7)

In the limit of small \(u \), this reduces to the familiar Newton’s law \(F = ma \), but in the relativistic region, the acceleration depends on the object’s velocity. As a result, the acceleration isn’t parallel to the force unless \(F \) is either parallel to \(u \) or \(F \perp u \); in the latter case \(u \cdot F = 0 \) and the second term is zero.

PINGBACKS

Pingback: Acceleration under a constant force