SURFACE AND VOLUME CURRENT IN A WIRE

Link to: [physicspages home page](#).
To leave a comment or report an error, please use the [auxiliary blog](#).
Post date: 11 Feb 2013.

A couple of examples of surface and volume current.

If we have a wire of radius a which carries a current I, what is the surface current K if the current in the wire is spread uniformly over the surface of the wire?

Since K is defined as the charge per unit width per unit time, we need the width over which the surface current is spread. This is just the circumference of the wire, so

$$K = \frac{I}{2\pi a} \quad (1)$$

Now suppose the current is distributed in the volume of the wire such that volume current density is inversely proportional to the distance from the axis. That is,

$$J = \frac{A}{r} \quad (2)$$

for some constant A. We need the total flow across the cross-sectional area of the wire to be the total current I, so we must have, using cylindrical coordinates:

$$I = \int_0^a \int_0^{2\pi} Jd\phi dr \quad (3)$$

$$= \frac{2\pi A a}{2\pi a} \quad (4)$$

Thus the volume current density is

$$J = \frac{I}{2\pi ar} \quad (6)$$