BIOT-SAVART LAW - CURRENT LOOPS

As mentioned earlier, besides feeling a force from an external magnetic field, an electric current also produces its own magnetic field. The experimentally determined rule for calculating this generated magnetic field is known as the Biot-Savart law. For a steady current (one that doesn’t vary with time) in a wire, this law can be written as

$$B(r) = \frac{\mu_0}{4\pi} \int \frac{I \times (r - r')}{|r - r'|^3} dl'$$ \hspace{1cm} (1)

where r' is a location on the wire and r is the point at which you want to determine the magnetic field. The constant μ_0 is known as the permeability of free space, and is the magnetic analogue to ϵ_0 in electrostatics. Its value is

$$\mu_0 = 1.25663706 \times 10^{-6} \text{ m kg s}^{-2} \text{Amp}^{-2}$$ \hspace{1cm} (2)

Again, this law isn’t derived from anything more fundamental; it’s a generalization of experiment, although the value of μ_0 is fixed at exactly $4\pi \times 10^{-7} \text{ m kg s}^{-2} \text{Amp}^{-2}$.

As an example, suppose we want to find the field generated by a steady current travelling round a square loop of side length $2R$, at the centre of the square. We can do this by finding the field generated by a single wire segment first.

Because of the cross product in the integrand, the field will be perpendicular to the plane of the square, so if we call this direction the z axis, and set the edge of the square at $x = R$, we can write the integral as (setting $r = 0$ since we’re interested in the field at the origin):
\[B_1(r) = \hat{z} \frac{I \mu_0}{4\pi} \int \frac{|r - r'| \sin \theta}{|r - r'|^3} dl' \quad (3) \]

\[= \hat{z} \frac{I \mu_0}{4\pi} \int_{-R}^{R} \frac{R}{(R^2 + y^2)^{3/2}} dy \quad (4) \]

\[= \hat{z} \frac{\sqrt{2} I \mu_0}{4\pi R} \quad (5) \]

where \(\theta \) is the angle between \(I \) and \(r - r' \), so that \(\sin \theta = R / |r - r'| \).

By symmetry, the contribution from all 4 sides is equal, so we get for the total field

\[B = 4B_1 = \hat{z} \frac{\sqrt{2} I \mu_0}{\pi R} \quad (6) \]

Now suppose we have a current loop consisting of a regular polygon with \(n \) sides. In this case, each side subtends an angle of \(2\pi / n \), so if we align one side parallel to the \(y \) axis at \(x = R \), this side will extend from an angle of \(-\pi / n \) to \(+\pi / n \), and will have a length of \(2R \tan \frac{\pi}{n} \). Now the integral for a single side is

\[B_1(0) = \hat{z} \frac{I \mu_0}{4\pi} \int_{-R \tan \frac{\pi}{n}}^{R \tan \frac{\pi}{n}} \frac{R}{(R^2 + y^2)^{3/2}} dy \quad (7) \]

\[= \hat{z} \frac{I \mu_0}{4\pi} \frac{2R \tan \frac{\pi}{n}}{R \sqrt{R^2 + (R \tan \frac{\pi}{n})^2}} \quad (8) \]

\[= \hat{z} \frac{I \mu_0}{2\pi R} \frac{\sin \frac{\pi}{n}}{n} \quad (9) \]

Each of the \(n \) sides will still contribute an equal amount, so the total field is

\[B = nB_1 = \hat{z} \frac{nI \mu_0}{2\pi R} \frac{\sin \frac{\pi}{n}}{n} \quad (10) \]

As \(n \to \infty \), this formula should give us the field due to a circular loop.

In this limit, we can approximate the sine by the first term in its Taylor expansion \(\sin \frac{\pi}{n} \approx \frac{\pi}{n} \) so we get

\[\lim_{n \to \infty} B = \hat{z} \frac{I \mu_0}{2R} \quad (11) \]
PINGBACKS

Pingback: Biot-Savart law: a couple more examples
Pingback: Biot-Savart law: force on other currents
Pingback: Electric and magnetic forces in two charged wires
Pingback: Ampère’s law for steady currents
Pingback: Ampère’s law: slab of current
Pingback: Solenoid with arbitrary cross-section
Pingback: Magnetic vector potential: div, curl and Laplacian
Pingback: Magnetic dipole moment of a current loop
Pingback: Currents and relativity
Pingback: Solenoid field from Biot-Savart law
Pingback: Magnetic field of a semi-circular current loop
Pingback: Magnetic field of current loop - off axis field
Pingback: Force between current loops: Newton’s third law
Pingback: Average magnetic field within a sphere
Pingback: Force on a magnetic dipole
Pingback: Toroidal solenoid with a gap
Pingback: Faraday’s law and the Biot-Savart law
Pingback: Mutual inductance
Pingback: Maxwell’s equations with varying charge but constant current
Pingback: Jefimenko’s equation for time-dependent magnetic field