MAGNETIC VECTOR POTENTIAL: SHEET OF CURRENT

Link to: [physicspages home page](http://www.physicspages.com).

To leave a comment or report an error, please use the auxiliary blog.

Post date: 7 Apr 2013.

Another example of calculating the magnetic vector potential in a case where the current extends to infinity. We consider a uniform sheet of current in the xy plane, carrying surface current density $K \hat{x}$. Using the same argument as in the case of a slab of current, the magnetic field due to this current is

$$B = \begin{cases} -\frac{\mu_0}{2} K \hat{y} & z > 0 \\ \frac{\mu_0}{2} K \hat{y} & z < 0 \end{cases} \quad (1)$$

Note that the field is independent of the distance from the sheet of current.

We can work out the potential by applying Stokes’s theorem. From the definition of A, we know that $\nabla \times A = B$, so if we define a closed loop then we have

$$\oint A \cdot dl = \int_B \cdot da \quad (2)$$

where the integral on the LHS is a line integral around the loop and the integral on the right is over the area A enclosed by the loop. For a flat loop, the direction of integration on the LHS is such that the right hand rule gives a vector pointing in the same direction as da on the RHS.

We need to be careful in defining directions for the area and line integrals to get the signs right. We’ll take as our area A a rectangle above the xy plane and parallel to the xz plane. The sides of the rectangle parallel to the xy plane are of length 1, with the lower side at a distance a and the upper side at a distance b from this plane. The normal to the area points in the \hat{y} direction. Since B is uniform everywhere above the plane, we get

$$\int_A B \cdot da = -\frac{\mu_0}{2} K (b - a) \quad (3)$$

For the line integral, the path around the rectangle is clockwise when looking in the $+y$ direction, and by symmetry, the integral of $A \cdot dl$ along the vertical sides cancels out, so
\[\oint A \cdot dl = A_x(b) - A_x(a) \]

(4)

Comparing these two, a reasonable candidate is

\[A = -\frac{\mu_0}{2} Kz \hat{x} \]

(5)

We can check this by finding the div and curl, as usual:

\[\nabla \cdot A = 0 \]

(6)

\[\nabla \times A = -\frac{\mu_0}{2} K \hat{y} \]

(7)

Below the sheet of current, the sign is reversed so we have

\[A = \frac{\mu_0}{2} Kz \hat{x} \]

(8)