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The fact that B is divergenceless allows us to express it as the curl of a

vector potential: B = ∇×A. By assuming ∇ ·A = 0 as well, can express it
in turn as the curl of another function: A = ∇×W. Although this is rarely
useful, we can try to work out W in a few cases.

First, we can express W in terms of B by noting

B = ∇×A (1)
= ∇× (∇×W) (2)

= ∇(∇ ·W)−∇
2W (3)

If we assume that W is divergenceless as well, then we get

∇
2W =−B (4)

This is the same form as the equation for the vector potential in terms of
the current density:

∇
2A =−µ0J (5)

This could be written in integral form as

A(r) =
µ0

4π

ˆ
V

J(r′)
|r− r′|

d3r′ (6)

Therefore we can write

W(r) =
1

4π

ˆ
V

B(r′)
|r− r′|

d3r′ (7)

It’s important to note that this equation relies on B→ 0 at infinite dis-
tance, just as the equation for A relied on the current density being finite in
extent.

We can now find W in a couple of special cases. First, consider the case
of a constant field. We might be tempted to try calculating W by simply
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taking B outside the integral above, but this integral formula doesn’t apply
in this case since B extends to infinity. We can, however, use the result we
got earlier for the vector potential for a constant field.

A =−1
2

r×B (8)

We need to solve the equation

∇×W =−1
2

r×B (9)

One way of approaching this is to split the vector equation into its com-
ponents. For the x component we have

∂Wz

∂y
−
∂Wy

∂z
=−1

2
(yBz− zBy) (10)

We can try a solution of the form

∂Wz

∂y
= −1

2
yBz (11)

Wz = −1
4
y2Bz+f (x,z) (12)

∂Wy

∂z
= −1

2
zBy (13)

Wy = −1
4
z2By+g (x,y) (14)

where f and g are functions of integration.
Working out the z component, we get

Wy =−
1
4
x2By+h(y,z) (15)

Comparing the two equations for Wy we get

Wy =−
1
4
By
(
x2 + z2) (16)

The other two components can be worked out the same way and we get

W =−1
4
[
Bx
(
y2 + z2) x̂+By

(
x2 + z2) ŷ+Bz

(
x2 +y2) ẑ

]
(17)

By direct calculation we can check that ∇ ·W = 0 so this is a valid solu-
tion. (There may be some fancy way of expressing this entirely in terms of
vectors and their products, but if so, it eluded me.) The solution is unlikely
to be unique.
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For a second example, we can return to the infinite solenoid. Griffiths
shows in his Example 5.12 that the vector potential inside a solenoid with
n turns per unit length and of radius R is

A =

{
µ0nIr

2 φ̂φφ r < R
µ0nIR

2

2r φ̂φφ r > R
(18)

Again, we seek components of W that satisfy the equation A = ∇×W.
Outside the solenoid, we have, using the equations for the curl in cylindrical
coordinates:

1
r

∂Wz

∂φ
−
∂Wφ

∂z
= 0 (19)

∂Wr

∂z
− ∂Wz

∂r
=

µ0nIR
2

2r
(20)

1
r

[
∂
(
rWφ

)
∂r

− ∂Wr

∂φ

]
= 0 (21)

We can try the solution

Wr =
µ0nIR

2z

2r
(22)

Wφ = 0 (23)
Wz = 0 (24)

This satisfies all three curl equations, and also satisfies

∇ ·W =
1
r

∂ (rWr)

∂r
+0+0 (25)

= 0 (26)

Inside the solenoid, we have

1
r

∂Wz

∂φ
−
∂Wφ

∂z
= 0 (27)

∂Wr

∂z
− ∂Wz

∂r
=

µ0nIr

2
(28)

1
r

[
∂
(
rWφ

)
∂r

− ∂Wr

∂φ

]
= 0 (29)

If we try a similar solution, we have
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Wr =
µ0nIrz

2
(30)

Wφ = 0 (31)
Wz = 0 (32)

This satisfies all of the curl equations but unfortunately the divergence
isn’t zero:

∇ ·W =
1
r

∂ (rWr)

∂r
+0+0 (33)

= µ0nIz (34)

We can fix this by adding in a z component, so we get

Wr =
µ0nIrz

2
(35)

Wφ = 0 (36)

Wz = −µ0nIz
2

2
(37)

This doesn’t affect the curl, and makes the divergence zero. Again, this
solution is unlikely to be unique.


