MAGNETIC DIPOLE FIELD OF A FINITE SOLENOID

For our last post on magnetostatics, we’ll consider a finite solenoid of radius R and length L, with a surface charge density σ rotating at angular speed ω. We know that the field outside an infinite solenoid is zero, but what about a finite solenoid? For points far from the axis, we can use a dipole approximation.

We align the axis along the z axis, and consider it to be a stack of individual current loops, each with its own dipole moment. The moment of a current loop is

$$\mathbf{m} = \pi IR^2 \hat{z}$$ \hspace{1cm} (1)$$

In terms of the parameters of the problem, each loop has a thickness of dz and thus carries a current of $I = \sigma R \omega dz$. The contribution of the loop at coordinate z is therefore

$$d\mathbf{m} = \pi \omega \sigma R^3 dz \hat{z}$$ \hspace{1cm} (2)$$

The field of the dipole from this current loop is

$$d\mathbf{B}_{dip} = \frac{\mu_0}{4\pi r^3} [3 (d\mathbf{m} \cdot \hat{r}) \hat{r} - d\mathbf{m}]$$ \hspace{1cm} (3)$$

We now need to consider carefully what is meant by \hat{r}. We’ll take the observation point to be a distance s along a line perpendicular to the axis and intersecting the axis at its midpoint. We’ll define s to be on the \hat{x} axis. Then for a given current loop at coordinate z, the vector \mathbf{r} points from the centre of this loop to s. Therefore
MAGNETIC DIPOLE FIELD OF A FINITE SOLENOID

\[r = \sqrt{s^2 + z^2} \]
\[\cos \theta = -\frac{z}{r} \]
\[\sin \theta = \frac{s}{r} \]
\[d\mathbf{m} \cdot \hat{r} = \pi \omega \sigma R^3 \cos \theta \, dz \]
\[= -\pi \omega \sigma R^3 \frac{z}{r} \, dz \]

where \(\theta \) is, as usual, the angle between \(\hat{r} \) and \(\hat{z} \). Therefore

\[\hat{r} = \cos \theta \hat{z} + \sin \theta \hat{x} \]
\[= -\frac{z}{r} \hat{z} + \frac{s}{r} \hat{x} \]

The total dipole field of the solenoid is therefore

\[\mathbf{B}_{\text{dip}} = \frac{\mu_0 \omega \sigma R^3}{4\pi} \int_{-L/2}^{L/2} \left[\left(\frac{3z^2}{(s^2 + z^2)^{5/2}} - \frac{1}{(s^2 + z^2)^{3/2}} \right) \hat{z} + \frac{sz}{(s^2 + z^2)^{5/2}} \hat{x} \right] \, dz \]

\[= -\frac{\mu_0 \omega \sigma R^3 L}{4 \left(s^2 + \left(\frac{L}{2} \right)^2 \right)^{3/2}} \hat{z} + 0 \hat{x} \]

\[= -\frac{\mu_0 \omega \sigma R^3 L}{4 \left(s^2 + \left(\frac{L}{2} \right)^2 \right)^{3/2}} \hat{z} \]

Note that as \(L \to \infty \), the field does tend to zero as \(\frac{1}{L^2} \) which is the correct value for an infinite solenoid.