CHARGING AND DISCHARGING A CAPACITOR: GENERAL CASE

Link to: physicspages home page.
To leave a comment or report an error, please use the auxiliary blog.
Post date: 18 Sep 2013.

The problem of charging and discharging a capacitor can be generalized to two chunks of conducting material of arbitrary shape embedded within a medium with conductivity σ. First, we can work out the resistance between the two conductors. Suppose at some instant in time the potential difference between the two conductors is V, and the current flowing between them is I. This current is the surface integral of the current density over some area that encloses one of the conductors; let’s make it the conductor with a net positive charge Q on its surface. That is

$$I = \int \mathbf{J} \cdot d\mathbf{a}$$

(1)

By our definition of conductivity, we’re taking $\mathbf{J} = \sigma \mathbf{E}$ so

$$I = \sigma \int \mathbf{E} \cdot d\mathbf{a} = \frac{\sigma Q}{\epsilon_0}$$

(2)

using Gauss’s law. The capacitance of the system is given by $C = Q/V$ and Ohm’s law says that $V = IR$ so

$$I = \frac{V}{R} = \frac{Q}{CR} = \frac{\sigma Q}{\epsilon_0}$$

(3)

$$R = \frac{\epsilon_0}{\sigma C}$$

(4)

Given the resistance between the conductors, the problem of finding the charge, current and potential as functions of time reduces to that in the previous post. So we have
\[Q(t) = CV_0 e^{-t/RC} \]
\[I(t) = \dot{Q}(t) = -\frac{CV_0 \sigma}{\epsilon_0} e^{-\sigma t/\epsilon_0} \]
\[V(t) = -I(t) R = \frac{RCV_0 \sigma}{\epsilon_0} e^{-\sigma t/\epsilon_0} = V_0 e^{-\sigma t/\epsilon_0} \]

Charging the capacitor with a battery of fixed potential \(V_0 \) gives the same results as in the previous post with \(RC = \epsilon_0/\sigma \):

\[Q(t) = CV_0 \left(1 - e^{-\sigma t/\epsilon_0} \right) \]
\[I(t) = \dot{Q}(t) = \frac{V_0}{R} e^{-\sigma t/\epsilon_0} = \frac{\sigma CV_0}{\epsilon_0} e^{-\sigma t/\epsilon_0} \]
\[V(t) = \frac{Q(t)}{C} = V_0 \left(1 - e^{-\sigma t/\epsilon_0} \right) \]

The voltage across the resistor is \(V_R(t) = V_0 - V(t) = V_0 e^{-\sigma t/\epsilon_0} = I(t) R. \)

PINGBACKS

Pingback: Momentum in a capacitor
Pingback: Angular momentum in electromagnetic fields