SELF-INDUCTANCE OF A LONG RECTANGLE

Link to: [physicspages home page](#).

To leave a comment or report an error, please use the [auxiliary blog](#).

Post date: 8 Oct 2013.

We’ll return to the earlier problem in which a small loop was enclosed between a larger circuit consisting essentially of two very long wires a distance \(d \) apart, connected at the far ends. This time, we’ll remove the small loop and try to find the self-inductance of the large loop. The magnetic field produced by each of the long wires is

\[
\mathbf{B} = \hat{\phi} \frac{\mu_0 I}{2\pi r}
\]

where the \(\hat{\phi} \) direction is obtained by using the right-hand rule and the direction of current, and \(r \) is the distance from the wire. Since the flux from each wire is \(\Phi_w = \int \mathbf{B} \cdot d\mathbf{a} = LI \) it would seem that all we need to do is a simple integral to get the inductance. The problem, however, arises in the limits of the integral. The total flux is twice that due to each wire, so for a unit length, we get

\[
\Phi = 2 \frac{\mu_0 I}{2\pi} \int_0^d \frac{dr}{r}
\]

The integral gives a logarithm, which is infinite at the lower limit of 0. In reality, of course, no wire is infinitely thin, so if we give the wire a radius of \(\epsilon \), then we get

\[
\Phi = 2 \frac{\mu_0 I}{2\pi} \int_{\epsilon}^d \frac{dr}{r} = \frac{\mu_0 I}{\pi} \ln \frac{d - \epsilon}{\epsilon}
\]

so the inductance per unit length is

\[
L = \frac{\mu_0}{\pi} \ln \frac{d - \epsilon}{\epsilon}
\]