CHANGING A PARTICLE’S SPEED IN A CYCLOTRON

Link to: [physicspages home page](http://www.physicspages.com/).
To leave a comment or report an error, please use the [auxiliary blog](http://www.physicspages.com/auxiliaryblog).
Post date: 11 Nov 2013.

We can now revisit the problem of a charged particle in a cyclotron field. Suppose we start with a charged particle of mass \(m \) and charge \(q \) at rest a distance \(R \) from the axis of the cyclotron, and we want to increase the speed of the particle in its circular orbit while keeping it at the same radius (such a device is called a betatron). We can do this by varying the magnetic field \(B(t) \) such that the cyclotron relation is always satisfied:

\[
qvB = \frac{mv^2}{R} \quad (1)
\]

\[
B = \frac{mv}{qR} \quad (2)
\]

Taking the time derivative, we get

\[
\dot{B} = \frac{m\dot{v}}{qR} \quad (3)
\]

The changing magnetic field induces a circumferential electric field \(E \), and since this field is parallel to the particle’s direction of motion it will act as the force that accelerates the particle. From Newton’s law, \(F = m\dot{v} = qE \), so

\[
\dot{B} = \frac{E}{R} \quad (4)
\]

If we assume the cyclotron has cylindrical symmetry, then we can integrate this equation along the particle’s orbit, along which both fields are constant in magnitude. That is

\[
\int B_c d\ell = \int \frac{E}{R} d\ell \quad (5)
\]

\[
\int E d\ell = R \int \dot{B}_c d\ell = 2\pi R^2 \dot{B}_c \quad (7)
\]
This equation applies on the circumference of the orbit only (not in the interior of the orbit), so we’ve added a suffix c to B_c to emphasize this point.

From Faraday’s law in integral form, we have also that the integral of the electric field is given by the change in flux:

$$\oint E \, dl = -\frac{d\Phi}{dt}$$ \hspace{1cm} (8)

$$= - \int B \cdot da$$ \hspace{1cm} (9)

where now we are integrating over all points within the orbit.

If we start with the particle at rest in zero field, then we have

$$2\pi R^2 B_c = - \int B \cdot da = \pi R^2 \dot{B}$$ \hspace{1cm} (10)

where \dot{B} is the average field across the orbit.

A word about the signs here. Suppose the magnetic field points in the $-z$ direction (as shown in Fig. 7.52 in Griffiths), and we take the area vector to point in the $+z$ direction. Further, if the magnetic field is increasing in magnitude, then \dot{B} points towards $-z$ as well. Thus $\dot{B} \cdot da < 0$, giving the sign shown.

We can integrate both sides to some time t to get

$$\dot{B}_c(t) = \frac{1}{2} \dot{B}(t)$$ \hspace{1cm} (11)

Thus we can speed up (or slow down, by decreasing the field) the particle by keeping the average field equal to twice the field at the radius of the orbit.