A wave guide is a hollow tube which allows electromagnetic waves to travel down it. Wave guides are usually made of conductors, so we’ll assume that they are made of a perfect conductor so that \(E = 0 \) everywhere inside the conducting boundary.

The boundary conditions implied by Maxwell’s equations are

\[
\begin{align*}
\epsilon_1 E_1^\perp - \epsilon_2 E_2^\perp &= \sigma_f \\
B_1^\perp - B_2^\perp &= 0 \\
E_1^\parallel - E_2^\parallel &= 0 \\
\frac{1}{\mu_1} B_1^\parallel - \frac{1}{\mu_2} B_2^\parallel &= K f \hat{n}
\end{align*}
\]

In particular, \(E_1^\parallel = 0 \) tells us that the parallel component of \(E \) is zero at the boundary of the wave guide. As usual, we’ll take the \(z \) axis to be parallel to wave guide’s axis, so the waves have the form

\[
\begin{align*}
\hat{E} &= \hat{E}_0(x, y) e^{i(kz-\omega t)} \\
\hat{B} &= \hat{B}_0(x, y) e^{i(kz-\omega t)}
\end{align*}
\]

Maxwell’s equations inside the guide (assumed to be a vacuum) are

\[
\begin{align*}
\nabla \cdot E &= 0 \\
\nabla \cdot B &= 0 \\
\nabla \times E &= -\frac{\partial B}{\partial t} \\
\nabla \times B &= \frac{1}{c^2} \frac{\partial E}{\partial t}
\end{align*}
\]

Previously, we applied the divergence equations to show that the waves were transverse (no \(z \) component), but that relied on the waves being unbounded plane waves, which is not the case here. It turns out that waves in...
WAVE GUIDES: DERIVATION OF THE WAVE EQUATION

a wave guide are not transverse in general, in that at least one of \(\mathbf{E} \) and \(\mathbf{B} \) must have a longitudinal component. We therefore write

\[
\tilde{\mathbf{E}}_0(x, y) = E_x \hat{x} + E_y \hat{y} + E_z \hat{z}
\]
(11)

\[
\tilde{\mathbf{B}}_0(x, y) = B_x \hat{x} + B_y \hat{y} + B_z \hat{z}
\]
(12)

where all the components on the RHS depend on \(x \) and \(y \), and may be complex functions. Putting these together with 5 and 6 into 9, we get (remembering that the components do not depend on \(z \)):

\[
\nabla \times \mathbf{E} = (\partial_y E_z - ik E_y) \hat{x} + (-\partial_x E_z + ik E_x) \hat{y} + (\partial_x E_y - \partial_y E_x) \hat{z}
\]
(13)

\[
\nabla \times \mathbf{B} = -\frac{\partial \mathbf{B}}{\partial t}
\]
(14)

\[
\nabla \times \mathbf{B} = i\omega B_x \hat{x} + i\omega B_y \hat{y} + i\omega B_z \hat{z}
\]
(15)

Equating components, we get

\[
\partial_y E_z - ik E_y = i\omega B_x
\]
(16)

\[
-\partial_x E_z + ik E_x = i\omega B_y
\]
(17)

\[
\partial_x E_y - \partial_y E_x = i\omega B_z
\]
(18)

We can apply exactly the same procedure to 10 to get the analogous equations

\[
\partial_y B_z - ik B_y = -i\frac{\omega}{c^2} E_x
\]
(19)

\[
-\partial_x B_z + ik B_x = -i\frac{\omega}{c^2} E_y
\]
(20)

\[
\partial_x B_y - \partial_y B_x = -i\frac{\omega}{c^2} E_z
\]
(21)

We can solve these 6 equations to get the \(x \) and \(y \) components in terms of the \(z \) components. For example, multiplying 17 through by \(k \) and 19 through by \(\omega \) and adding, we get

\[
-k \partial_x E_z + ik^2 E_x - i\frac{\omega^2}{c^2} E_x = \omega \partial_y B_z
\]
(22)

\[
E_x = \frac{1}{i(k^2 - \frac{\omega^2}{c^2})}(k \partial_x E_z + \omega \partial_y B_z)
\]
(23)

\[
= \frac{i}{\omega^2/c^2 - k^2}(k \partial_x E_z + \omega \partial_y B_z)
\]
(24)
Similarly, we can get the other 3 equations. Multiply (16) by k and (20) by ω and subtract to get

$$E_y = \frac{i}{\omega^2/c^2 - k^2} (k\partial_y E_z - \omega \partial_x B_z)$$ \hspace{1cm} (25)

Multiply (16) by ω/c^2 and (20) by k and subtract to get

$$B_x = \frac{i}{\omega^2/c^2 - k^2} \left(k\partial_x B_z - \frac{\omega}{c^2} \partial_y E_z \right)$$ \hspace{1cm} (26)

Multiply (17) by ω/c^2 and (19) by k and add to get

$$B_y = \frac{i}{\omega^2/c^2 - k^2} \left(k\partial_y B_z + \frac{\omega}{c^2} \partial_x E_z \right)$$ \hspace{1cm} (27)

To get the wave equations we can apply (7) and (8):

$$\nabla \cdot E = \frac{i}{\omega^2/c^2 - k^2} \left[(k\partial_{xx} E_z + \omega \partial_{yy} B_z) + (k\partial_{yy} E_z - \omega \partial_{xx} B_z) \right] + i k E_z$$

$$= \frac{i}{\omega^2/c^2 - k^2} \left[k\partial_{xx} E_z + k\partial_{yy} E_z \right] + i k E_z$$ \hspace{1cm} (28)

$$= 0$$ \hspace{1cm} (29)

The wave equation for E_z is thus

$$[\partial_{xx} + \partial_{yy} + \omega^2/c^2 - k^2] E_z = 0$$ \hspace{1cm} (31)

Exactly the same procedure applied to $\nabla \cdot B = 0$ gives

$$[\partial_{xx} + \partial_{yy} + \omega^2/c^2 - k^2] B_z = 0$$ \hspace{1cm} (32)

Solving these two equations subject to the boundary conditions will give us all 3 components of each field.

Pingbacks

Pingback: Rectangular wave guides: transverse electric waves
Pingback: Wave guide: energy flows at the group velocity
Pingback: Rectangular resonant cavity