Although purely transverse electromagnetic (TEM) waves can’t exist within a hollow wave guide, it is possible to have TEM waves in a coaxial transmission line. To see this, we start with Maxwell’s equations in the form

$$\begin{align*}
\partial_y E_z - ik E_y &= i \omega B_x \\
-\partial_x E_z + ik E_x &= i \omega B_y \\
\partial_x E_y - \partial_y E_x &= i \omega B_z \\
\partial_y B_z - ik B_y &= -i \frac{\omega}{c^2} E_x \\
-\partial_x B_z + ik B_x &= -i \frac{\omega}{c^2} E_y \\
\partial_x B_y - \partial_y B_x &= -i \frac{\omega}{c^2} E_z
\end{align*}$$

By setting $B_z = E_z = 0$ we see from (1) and (5) that

$$B_x = - \frac{k}{\omega} E_y$$

$$-\frac{k^2}{\omega} E_y = - \frac{\omega}{c^2} E_y$$

$$k = \frac{\omega}{c}$$

Substituting this into (1) and (2) we get

$$E_y = -c B_x$$

$$E_x = c B_y$$

from which we see that

$$\mathbf{E} \cdot \mathbf{B} = [c B_y, -c B_x, 0] \cdot [B_x, B_y, 0] = 0$$
so the electric and magnetic fields are perpendicular to each other.

From [3] and the other two Maxwell equations for vacuum: $\nabla \cdot \mathbf{E} = 0$ and $\nabla \cdot \mathbf{B} = 0$ we get

\[
\begin{align*}
\partial_x E_y - \partial_y E_x &= 0 \quad (13) \\
\partial_x B_y - \partial_y B_x &= 0 \quad (14) \\
\partial_x E_x + \partial_y E_y &= 0 \quad (15) \\
\partial_x B_x + \partial_y B_y &= 0 \quad (16)
\end{align*}
\]

Since the components of \mathbf{E} and \mathbf{B} don’t depend on z [remember the z dependence is contained in the complex exponential in the form $\tilde{\mathbf{E}}(x, y, z, t) = \tilde{\mathbf{E}}_0(x, y) e^{i(kz-\omega t)}$ and $\tilde{\mathbf{B}}(x, y, z, t) = \tilde{\mathbf{B}}_0(x, y) e^{i(kz-\omega t)}$] the first equation is equivalent to saying $\nabla \times \tilde{\mathbf{E}}_0 = 0$ and the second to $\nabla \times \tilde{\mathbf{B}}_0 = 0$. Together with $\nabla \cdot \mathbf{E} = 0$ and $\nabla \cdot \mathbf{B} = 0$, these are Maxwell’s equations for static fields $[\frac{\partial \mathbf{E}}{\partial t} = \frac{\partial \mathbf{B}}{\partial t} = 0]$ in empty space (no free charge or current). In a cylindrical coaxial cable with an inner cylinder of radius a and an outer cylinder of radius b, the magnetic field is, for $a < r < b$

\[
\mathbf{B}_0 = \frac{\mu_0 I}{2\pi r} \hat{\phi}
\]

where I is the steady current in the inner cylinder. The electric field due to an infinite line of charge is

\[
\mathbf{E}_0 = \frac{\lambda}{2\pi \epsilon_0 r} \hat{r}
\]

where λ is the linear charge density. These are formal solutions for the case of cylindrical symmetry; the important thing is that the fields have the forms

\[
\begin{align*}
\mathbf{B}_0 &= \frac{A}{cr} \hat{\phi} \quad (19) \\
\mathbf{E}_0 &= \frac{A}{r} \hat{r} \quad (20)
\end{align*}
\]

for some constant A.

Plugging these into the full formulas for $\tilde{\mathbf{E}}$ and $\tilde{\mathbf{B}}$ and taking the real part, we get
COAXIAL WAVE GUIDES: TEM MODE

\[E = \frac{A \cos (kz - \omega t)}{r} \hat{r} \] \hspace{1cm} (21)

\[B = \frac{A \cos (kz - \omega t)}{cr} \hat{\phi} \] \hspace{1cm} (22)

These equations satisfy Maxwell’s equations:

\[\nabla \cdot E = \frac{1}{r} \frac{\partial}{\partial r} (rE_r) = 0 \] \hspace{1cm} (23)

\[\nabla \cdot B = \frac{1}{r} \frac{\partial B_\phi}{\partial \phi} = 0 \] \hspace{1cm} (24)

\[\nabla \times E = \frac{\partial E_r}{\partial z} \hat{\phi} \] \hspace{1cm} (25)

\[= -kA \sin (kz - \omega t) \hat{r} \] \hspace{1cm} (26)

\[= -\frac{\omega A \sin (kz - \omega t)}{c} r \hat{\phi} \] \hspace{1cm} (27)

\[= -\frac{\partial B}{\partial t} \] \hspace{1cm} (28)

\[\nabla \times B = -\frac{\partial B_\phi}{\partial z} \hat{r} + \frac{1}{r} \frac{\partial}{\partial r} (rB_\phi) \hat{z} \] \hspace{1cm} (29)

\[= k \frac{A \sin (kz - \omega t)}{cr} \hat{r} \] \hspace{1cm} (30)

\[= \frac{\omega A \sin (kz - \omega t)}{c^2 r} \hat{r} \] \hspace{1cm} (31)

\[= \frac{1}{c^2} \frac{\partial E}{\partial t} \] \hspace{1cm} (32)

The boundary conditions are

\[B_1^\perp - B_2^\perp = 0 \] \hspace{1cm} (33)

\[E_1^\parallel - E_2^\parallel = 0 \] \hspace{1cm} (34)

and since \(B \) is circumferential, its component normal to the cylinders is zero, and since \(E \) is radial, its parallel component is zero, so the boundary conditions are satisfied.

By comparison with [17] and [18] we can write the analogs for the full fields

\[B = \frac{\mu_0 I (z,t)}{2\pi r} \hat{\phi} \] \hspace{1cm} (35)
\[E = \frac{\lambda(z,t)}{2\pi \varepsilon_0 r^2} \hat{r} \] (36)

From this we can read off the current and charge density on the inner cylinder.

\[I(z,t) = \frac{2\pi A \cos(kz - \omega t)}{\mu_0 c} \] (37)

\[\lambda(z,t) = 2\pi \varepsilon_0 A \cos(kz - \omega t) \] (38)