RADIATION FROM A ROTATING DIPOLE

We can simulate a rotating dipole by superimposing two perpendicular oscillating dipoles. If our rotating dipole is located at the origin and rotates about the \(z \) axis (so the axis of the dipole lies in the \(xy \) plane), then we get

\[
p = p_0 (\cos \omega t \hat{x} + \sin \omega t \hat{y})
\]

(1)

Since the fields obey the superposition principle (fields from 2 sources just add), we can work through the formulas we found earlier to get the fields and thus the radiated power. To simplify the notation, we’ll use the shorthand

\[
c_\omega \equiv \cos \left(\omega \left(t - \frac{r}{c} \right) \right)
\]

(2)

\[
c_\theta \equiv \cos \theta
\]

(3)

\[
c_\phi \equiv \cos \phi
\]

(4)

with analogous notation for the sines of these quantities.

The fields for a dipole pointing in an arbitrary direction are

\[
E = -\frac{\mu_0 \omega^2}{4\pi r} \cos \left(\omega \left(t - \frac{r}{c} \right) \right) \left(\hat{p}_0 \times \hat{r} \right) \times \hat{r}
\]

(5)

\[
B = -\frac{\mu_0 \omega^2}{4\pi r c} \cos \left(\omega \left(t - \frac{r}{c} \right) \right) \left(\hat{p}_0 \times \hat{r} \right)
\]

(6)

Superposing the two perpendicular dipoles we get

\[
E = -\frac{\mu_0 p_0 \omega^2}{4\pi r} [(c_\omega \hat{x} + s_\omega \hat{y}) \times \hat{r}] \times \hat{r}
\]

(7)

\[
B = -\frac{\mu_0 p_0 \omega^2}{4\pi r c} [(c_\omega \hat{x} + s_\omega \hat{y}) \times \hat{r}]
\]

(8)

To do the cross products we convert the rectangular unit vectors to spherical unit vectors:
\[\hat{x} = s_\theta c_\phi \hat{r} + c_\theta c_\phi \hat{\theta} - s_\phi \hat{\phi} \] (9)

\[\hat{y} = s_\theta s_\phi \hat{r} + c_\theta s_\phi \hat{\theta} + c_\phi \hat{\phi} \] (10)

Then

\[\hat{x} \times \hat{r} = -c_\theta c_\phi \hat{\phi} - s_\phi \hat{\theta} \] (11)

\[(\hat{x} \times \hat{r}) \times \hat{r} = -c_\theta s_\phi \hat{\phi} + c_\phi \hat{\theta} \] (12)

\[\hat{y} \times \hat{r} = -c_\theta s_\phi \hat{\phi} - c_\phi \hat{\theta} \] (13)

\[(\hat{y} \times \hat{r}) \times \hat{r} = -c_\theta s_\phi \hat{\phi} - c_\phi \hat{\theta} \] (14)

Plugging everything in and collecting terms we get

\[\mathbf{E} = -\frac{\mu_0 p_0 \omega^2}{4\pi r} \left[\hat{\theta} c_\theta \left(-c_\omega c_\phi - s_\omega s_\phi \right) + \hat{\phi} \left(c_\omega s_\phi - s_\omega c_\phi \right) \right] \] (15)

\[\mathbf{B} = -\frac{\mu_0 p_0 \omega^2}{4\pi r c} \left[-\hat{\theta} \left(c_\omega s_\phi - s_\omega c_\phi \right) + \hat{\phi} \left(-c_\omega c_\phi - s_\omega s_\phi \right) \right] \] (16)

Defining

\[E_\theta \equiv -c_\theta \left(c_\omega c_\phi + s_\omega s_\phi \right) \] (17)

\[E_\phi \equiv \left(c_\omega s_\phi - s_\omega c_\phi \right) \] (18)

we can write the fields as

\[\mathbf{E} = -\frac{\mu_0 p_0 \omega^2}{4\pi r} \left[\hat{\theta} E_\theta + \hat{\phi} E_\phi \right] \] (19)

\[\mathbf{B} = -\frac{\mu_0 p_0 \omega^2}{4\pi r c} \left[-\hat{\theta} E_\phi + \hat{\phi} E_\theta \right] \] (20)

In this form, it’s obvious that \(\mathbf{E} \cdot \mathbf{B} = 0 \), so \(\mathbf{E} \) and \(\mathbf{B} \) are perpendicular.

The Poynting vector is

\[\mathbf{S} = \frac{1}{\mu_0} \mathbf{E} \times \mathbf{B} \] (21)

\[= \frac{\mu_0}{c} \left(\frac{p_0 \omega^2}{4\pi r} \right)^2 \left(E_\theta^2 + E_\phi^2 \right) \hat{r} \] (22)

\[= \frac{\mu_0}{c} \left(\frac{p_0 \omega^2}{4\pi r} \right)^2 \left(c_\theta^2 \left(c_\omega c_\phi + s_\omega s_\phi \right)^2 + \left(c_\omega s_\phi - s_\omega c_\phi \right)^2 \right) \hat{r} \] (23)
The average energy radiated is the average of S over a single time cycle, so it’s the average over the terms involving c_ω and s_ω. These are of two types: terms involving c_ω^2 or s_ω^2 and the cross terms involving $s_\omega c_\omega$. The average of $s_\omega c_\omega$ over a cycle is zero and the average of c_ω^2 or s_ω^2 is $\frac{1}{2}$, so the cross terms contribute nothing and we get

$$\langle S \rangle = \frac{\mu_0}{c} \left(\frac{p_0 \omega^2}{4\pi r} \right)^2 \left[\frac{1}{2} c_\theta^2 (c_\phi^2 + s_\phi^2) + \frac{1}{2} (c_\phi^2 + s_\phi^2) \right]$$

$$= \frac{\mu_0}{2c} \left(\frac{p_0 \omega^2}{4\pi r} \right)^2 \left(1 + \cos^2 \theta \right)$$

(24)

The average radiated power is maximum in the $\pm z$ directions where $\theta = 0, \pi$ and minimum (though not zero) in the xy plane, where $\theta = \frac{\pi}{2}$. There is no dependence on ϕ which is what we’d expect on average since the dipole rotates uniformly through all values of ϕ. [There is a dependence on ϕ within each cycle, since the radiated power in a given azimuthal direction depends on where the dipole is in its rotation.]

The total average radiated power is

$$\langle P \rangle = \frac{\mu_0}{2c} \left(\frac{p_0 \omega^2}{4\pi} \right)^2 \int_0^\pi \int_0^{2\pi} \frac{1 + \cos^2 \theta}{r^2} r^2 \sin \theta d\phi d\theta$$

$$= \frac{\mu_0 p_0^2 \omega^4}{6\pi c}$$

(25)

This is exactly twice the power from a single oscillating dipole. Although power doesn’t ordinarily obey the superposition principle since it depends on the product of E and B, it does here because the cross terms in 23 average out to zero over a time cycle, since the two perpendicular dipoles are $\frac{\pi}{2}$ out of phase. If they were exactly in phase, we would replace s_ω by c_ω everywhere in the calculation, and then the cross terms wouldn’t average out to zero and the combined power would not be twice the individual power.

Pingbacks

Pingback: [Power radiated by a spinning ring of charge](#)