Radiation reaction with a delta-function external force

Here’s another example of applying an external force to a charge feeling the radiation reaction force. In general, a charge’s acceleration obeys the differential equation

\[a = \tau \dot{a} + \frac{F}{m} \]

(1)

where \(F \) is the external force and

\[\tau \equiv \frac{\mu_0 q^2}{6\pi mc} \]

(2)

Suppose now that the force is a delta function:

\[F = k\delta(t) \]

(3)

for some constant \(k \). In the earlier post, we showed that if \(F \) is finite everywhere, then \(a \) must be continuous everywhere. However, here \(F \) is not finite at \(t = 0 \). As before we start by integrating \[1 \] over a small time interval around \(t = 0 \):

\[\int_{-\epsilon}^{\epsilon} a \, dt = \tau [a(\epsilon) - a(-\epsilon)] + \frac{1}{m} \int_{-\epsilon}^{\epsilon} F \, dt \]

(4)

Provided that \(a \) is finite everywhere, the integral on the LHS goes to zero as \(\epsilon \to 0 \) so we’re left with
\[
\tau \Delta a = -\frac{1}{m} \int_{-\epsilon}^{\epsilon} F \, dt \tag{5}
\]

\[
= -\frac{k}{m} \int_{-\epsilon}^{\epsilon} \delta(t) \, dt \tag{6}
\]

\[
= -\frac{k}{m} \tag{7}
\]

\[
\Delta a = -\frac{k}{m\tau} \tag{8}
\]

We can repeat the calculations we did earlier to check that energy is conserved here. Since \(F = 0 \) everywhere except \(t = 0 \), the general solution of \(\Delta a \) is

\[
a(t) = \begin{cases}
a_0 e^{t/\tau} & t < 0 \\ a_1 e^{t/\tau} & t > 0 \end{cases} \tag{9}
\]

If we eliminate the runaway acceleration for \(t > 0 \) by requiring \(a_1 = 0 \) then the condition \(\Delta a \) requires \(a_0 = \frac{k}{m\tau} \), so

\[
a(t) = \begin{cases}
\frac{k}{m\tau} e^{t/\tau} & t < 0 \\
0 & t > 0 \end{cases} \tag{10}
\]

By requiring \(v = 0 \) at \(t = -\infty \) and that \(v \) is continuous at \(t = 0 \) we get

\[
v(t) = \begin{cases}
\frac{k}{m} e^{t/\tau} & t < 0 \\
\frac{k}{m} & t > 0 \end{cases} \tag{11}
\]

The work done by the force is

\[
W = \int_{-\infty}^{\infty} F v \, dt \tag{12}
\]

\[
= k \int_{-\infty}^{\infty} \delta(t) v \, dt \tag{13}
\]

\[
= kv(0) \tag{14}
\]

\[
= \frac{k^2}{m} \tag{15}
\]

The energy radiated \(R \) is given by integrating the Larmor formula

\[
P = \frac{\mu_0 q^2 a^2}{6\pi c} = m\tau a^2 \tag{16}
\]
so we get

\[R = m\tau \int_{-\infty}^{0} \left(\frac{k}{m\tau} \right)^2 e^{2t/\tau} dt \] \hspace{1cm} (17)

\[= \frac{k^2}{2m} \] \hspace{1cm} (18)

The final kinetic energy is

\[K = \frac{1}{2} m \frac{k^2}{m^2} = \frac{k^2}{2m} \] \hspace{1cm} (19)

Thus

\[W = R + K \] \hspace{1cm} (20)

and energy is conserved.

Pingbacks

Pingback: Tunnelling through a potential barrier with the radiation reaction force