VELOCITY ADDITION IN SPECIAL RELATIVITY

Link to: physicspages home page.
To leave a comment or report an error, please use the auxiliary blog.
Post date: 21 Feb 2015.

The velocity addition formula in special relativity is (if \(v_a \) and \(v_b \) are parallel):

\[
v_r = \frac{v_a + v_b}{1 + \frac{v_a v_b}{c^2}}
\]

(1)

Example 1. To get a feel for how small the correction to the classical formula \(v_c = v_a + v_b \) is for everyday speeds, suppose \(v_a = 5 \text{ miles/hour} = 2.235 \text{ m s}^{-1} \) and \(v_b = 60 \text{ miles/hour} = 26.82 \text{ m s}^{-1} \). Since \(v_a v_b/c^2 \) in this case is very small, we can approximate \(v_r \) by

\[
v_r \approx (v_a + v_b) \left(1 - \frac{v_a v_b}{c^2}\right)
\]

(2)

The percentage error in the classical formula is then

\[
\Delta v = \frac{v_c - v_r}{v_c} \times 100\%
\]

(3)

\[
\approx \frac{(v_a + v_b) \left(\frac{v_a v_b}{c^2}\right)}{v_a + v_b} \times 100\%
\]

(4)

\[
= \frac{v_a v_b}{c^2} \times 100\%
\]

(5)

\[
= \frac{2.235 \times 26.82}{(3 \times 10^8)^2} \times 100\%
\]

(6)

\[
= 6.66 \times 10^{-14}\%
\]

(7)

It’s not surprising that no relativistic effects are seen in the everyday world.

Example 2. Suppose you could run at \(v_a = 0.5c \) (relative to the train) down the corridor of a train travelling at \(v_b = 0.75c \). An observer on the ground would see your speed relative to the ground as
\[
v = \frac{0.5 + 0.75}{1 + (0.5)(0.75)} c \]
\[
= 0.91 c
\]

(8)

(9)

Even though the classical sum of velocities is greater than \(c \), the relativistic formula still gives a result that is less than \(c \).

Example 3. The formula always gives a result that is less than \(c \). To prove this, we can simplify the notation by using velocities that are fractions of \(c \) so that \(a \equiv v_a / c \) and \(b \equiv v_b / c \) with the sum given by \(s \equiv v_r / c \). Then

\[
s = \frac{a + b}{1 + ab}
\]

(10)

To check if there are any extrema in the region \(0 \leq a \leq 1, 0 \leq b \leq 1 \) we can take the two partial derivatives and set them to zero:

\[
\frac{\partial s}{\partial a} = \frac{1}{1 + ab} - \frac{(a + b)b}{(1 + ab)^2} = 0
\]

(11)

\[
\frac{\partial s}{\partial b} = \frac{1}{1 + ab} - \frac{(a + b)a}{(1 + ab)^2} = 0
\]

(12)

The only solution within the region is \(a = b = 1 \). We can see that this must be a maximum within the region, since along the border \(a = 1 \) or the border \(b = 1 \) we have \(s = 1 \), along the border \(a = 0 \) we have \(s = b \) and along the border \(b = 0 \) we have \(s = a \) so that \(s \leq 1 \) on all borders. Thus \(s \leq 1 \) everywhere in the region \(0 \leq a \leq 1, 0 \leq b \leq 1 \). The surface [10] within this region looks like this:
The point $a = b = 1$ is, however, actually a saddle point, as an expanded plot of the region $0 \leq a \leq 2$, $0 \leq b \leq 2$ reveals:

PINGBACKS

Pingback: Velocity addition formulas for all 3 directions
Pingback: Spectroscopic, eclipsing binary stars: mass, radius and temperature
Pingback: Scattering cross-section applied to boson decay
Pingback: Lorentz transformations for energy and momentum