Link to: "physicspages home page."

To leave a comment or report an error, please use the auxiliary blog.

Post date: 28 Mar 2015.

The Minkowski force K is the rate of change of four-momentum with respect to proper time, and allows Newton’s law to be written in its natural form

$$K = m\alpha$$

(1)

where α is the proper acceleration, or second derivative of position with respect to proper time. Here we’ll investigate the behaviour of a particle subject to a constant Minkowski force in one dimension.

In terms of ordinary force, we have

$$K = \frac{dp}{d\tau} = \frac{dp}{dt} \frac{dt}{d\tau} = \frac{1}{\sqrt{1-u^2/c^2}} F$$

(2)

The ordinary momentum p is

$$p = \frac{mu}{\sqrt{1-u^2/c^2}}$$

(3)

so its derivative is

$$\frac{dp}{dt} = \frac{m}{\sqrt{1-u^2/c^2}} \frac{du}{dt} + \frac{mu^2}{(1-u^2/c^2)^{3/2}} \frac{du}{dt}$$

(4)

Inserting this into (2) we get

$$\frac{K}{m} dt = \frac{du}{1-u^2/c^2} + \frac{u^2 du}{(1-u^2/c^2)^2}$$

(5)

We can integrate both sides (using software, or integral tables) to get

$$\frac{K}{m} t + C = \frac{c}{4} \ln \left[\frac{c+u}{c-u} \right] + \frac{c^2}{4} \left[\frac{1}{c-u} - \frac{1}{c+u} \right]$$

(6)
where \(C \) is a constant of integration. If the initial conditions are \(u = 0 \) at \(t = 0 \), then \(C = 0 \) and we have

\[
\frac{K}{m} t = \frac{c}{4} \ln \left[\frac{c + u}{c - u} \right] + \frac{c^2}{4} \left[\frac{1}{c - u} - \frac{1}{c + u} \right]
\]

(7)

This is an implicit equation for the speed of the particle as a function of time. If we want the position as a function of time, we need a relation between \(u \) and \(x \). Returning to \(2 \) and \(3 \) we have

\[
\sqrt{1 - u^2/c^2} \frac{K}{m} = \frac{d}{dx} \left(\frac{u}{\sqrt{1 - u^2/c^2}} \right)
\]

(8)

We can use the chain rule to convert the derivative on the RHS to a derivative with respect to \(x \) by multiplying both sides by \(dt/dx \)

\[
\frac{dt}{dx} \sqrt{1 - u^2/c^2} \frac{K}{m} = \frac{d}{dx} \frac{u}{\sqrt{1 - u^2/c^2}} = \frac{d}{dx} \left(\frac{u}{\sqrt{1 - u^2/c^2}} \right)
\]

(9)

Now \(dx/dt = u \) so \(dt/dx = 1/u \) and

\[
\sqrt{1 - u^2/c^2} \frac{K}{m} \frac{u}{K/m} = \frac{d}{dx} \left(\frac{u}{\sqrt{1 - u^2/c^2}} \right)
\]

(10)

If we call the expression in the parentheses on the RHS \(A \), then we can integrate with respect to \(x \) (since \(K/m \) is a constant):

\[
A \equiv \frac{u}{\sqrt{1 - u^2/c^2}}
\]

(11)

\[
\frac{1}{A} m \frac{K}{x + C} = \frac{dA}{dx}
\]

(12)

\[
\frac{K}{m} x + C = \frac{1}{2} A^2
\]

(13)

Again, starting from rest at the origin we have \(u = 0 \) when \(x = 0 \) so \(A = 0 \) also, and therefore \(C = 0 \), so we have

\[
A = \frac{u}{\sqrt{1 - u^2/c^2}} = \sqrt{\frac{2Kx}{m}}
\]

(14)

At this point we could get a relation between \(x \) and \(t \) by solving \(14 \) for \(u \) in terms of \(x \) and then substituting this into \(7 \). For reference, we get
\[u = \sqrt{\frac{2Kx}{m}} \frac{1}{\sqrt{1 + \frac{2Kx}{mc^2}}} \]

(15)

so substituting will give something of a mess. To get the answer given in Griffiths requires a bit of algebra, but here is how I did it. Griffiths defines the quantity \(z \) as

\[z \equiv \sqrt{\frac{2Kx}{mc^2}} \]

(16)

\[= \frac{A}{c} \]

(17)

\[= \frac{u}{c\sqrt{1-u^2/c^2}} \]

(18)

The quantities appearing in Griffiths’s answer are

\[\sqrt{1+z^2} = \frac{c}{\sqrt{c^2-u^2}} \]

(19)

\[z\sqrt{1+z^2} = \frac{u}{c(1-u^2/c^2)} \]

(20)

We can rewrite (7) to get

\[\frac{2Kt}{mc} = \frac{1}{2} \ln \left[\frac{c+u}{c-u} \right] + \frac{c}{2} \left[\frac{1}{c-u} - \frac{1}{c+u} \right] \]

(21)

We’ll deal with the logarithm first. Its argument is

\[\frac{c+u}{c-u} = \frac{(c+u)^2}{c^2 (1-u^2/c^2)} \]

(22)

\[= \frac{2u}{c(1-u^2/c^2)} + \frac{u^2 + c^2}{c^2 - u^2} \]

(23)

\[= \frac{2u}{c(1-u^2/c^2)} + \frac{c^2 - u^2 + 2u^2}{c^2 - u^2} \]

(24)

\[= \frac{2u}{c(1-u^2/c^2)} + 1 + \frac{2u^2}{c^2 (1-u^2/c^2)} \]

(25)

Now we also have
\[(z + \sqrt{1 + z^2})^2 = 2z^2 + 2z\sqrt{1 + z^2} + 1 \quad (26)\]
\[= \frac{2u^2}{c^2(1 - u^2/c^2)} + \frac{2u}{c(1 - u^2/c^2)} + 1 \quad (27)\]
\[= \frac{c + u}{c - u} \quad (28)\]

Therefore
\[
\frac{1}{2} \ln \left[\frac{c + u}{c - u} \right] = \ln \sqrt{\frac{c + u}{c - u}} \quad (29)
\]
\[= \ln \left(z + \sqrt{1 + z^2} \right) \quad (30)\]

For the second term in (21) we have
\[
c \left[\frac{1}{c - u} - \frac{1}{c + u} \right] = \frac{c}{2} \frac{2u}{c^2(1 - u^2/c^2)} \quad (31)
\]
\[= \frac{u}{c(1 - u^2/c^2)} \quad (32)\]
\[= z\sqrt{1 + z^2} \quad (33)\]

Putting it all together, we have
\[
\frac{2Kt}{mc} = \ln \left(z + \sqrt{1 + z^2} \right) + z\sqrt{1 + z^2} \quad (34)\]