COMMUTATORS: A FEW THEOREMS

Link to: physicspages home page.
To leave a comment or report an error, please use the auxiliary blog.
Post date: 17 Sep 2012.
The commutator of two operators is defined as

\[[A, B] \equiv AB - BA \quad (1) \]

In general, a commutator is non-zero, since the order in which we apply operators can make a difference. In practice, to work out a commutator we need to apply it to a test function \(f \), so that we really need to work out \([A, B]f\) and then remove the test function to see the result. This is because many operators, such as the momentum, involve taking the derivative.

We’ll now have a look at a few theorems involving commutators.

Theorem 1:

\[[AB, C] = A[B, C] + [A, C] B \quad (2) \]

Proof: The LHS is:

\[[AB, C] = ABC - CAB \quad (3) \]

The RHS is:

\[A[B, C] + [A, C] B = ABC - ACB + ACB - CAB = ABC - CAB = [AB, C] \quad (6) \]

QED.

Theorem 2:

\[[x^n, p] = i\hbar nx^{n-1} \quad (7) \]

where \(p \) is the momentum operator.

Proof: Using \(p = \frac{\hbar}{i} \partial / \partial x \) and letting the commutator operate on some arbitrary function \(g \):
\[[x^n, p] g = x^n \frac{\hbar}{i} \frac{\partial}{\partial x} g - \frac{\hbar}{i} \frac{\partial}{\partial x} (x^n g) \] (8)

\[= x^n \frac{\hbar}{i} \frac{\partial}{\partial x} - \frac{\hbar}{i} nx^{n-1} g - x^n \frac{\hbar}{i} \frac{\partial}{\partial x} \] (9)

\[= i\hbar nx^{n-1} g \] (10)

Removing the function \(g \) gives the result \([x^n, p] = i\hbar nx^{n-1}. \) QED.

Theorem 3:

\[[f(x), p] = i\hbar \frac{df}{dx} \] (11)

Again, letting the commutator operate on a function \(g \):

\[[f(x), p] = f \frac{\hbar}{i} \frac{\partial}{\partial x} g - \frac{\hbar}{i} \frac{\partial}{\partial x} (fg) \] (12)

\[= f \frac{\hbar}{i} \frac{\partial}{\partial x} g - \frac{\hbar}{i} \frac{\partial f}{\partial x} g - f \frac{\hbar}{i} \frac{\partial g}{\partial x} \] (13)

\[= i\hbar \frac{\partial f}{\partial x} g \] (14)

Removing \(g \) gives the result \([f(x), p] = i\hbar \frac{\partial f}{\partial x}. \) QED.

Pingbacks

- Angular momentum - commutators with position and momentum
- Selection rules for spontaneous emission of radiation
- Lie brackets (commutators)
- The classical limit of quantum mechanics; Ehrenfest’s theorem
- Poisson brackets to commutators: classical to quantum
- Translational invariance and conservation of momentum
- Finite transformations: correspondence between classical and quantum
- Parity transformations
- Linear chain of oscillators - Quantum treatment
- Lie rotations in higher dimensions