CREATION AND ANNIHILATION OPERATORS: NORMALIZATION

The number operators are defined in terms of the creation and annihilation operators for the free scalar Hamiltonian as

\[N_a(k) = a^\dagger(k) a(k) \quad (1) \]
\[N_b(k) = b^\dagger(k) b(k) \quad (2) \]

We’ve seen that \(a^\dagger(k) \) creates a particle of energy \(\omega_k \) when it operates on a state, and \(a(k) \) destroys a particle with energy \(\omega_k \) when it operates on a state (if that state contains such a particle). That is, the state \(a^\dagger(k) | n_k \rangle \) is an eigenstate of \(N_a(k) \) with eigenvalue \(n_k + 1 \) and \(a(k) | n_k \rangle \) is an eigenstate of \(N_a(k) \) with eigenvalue \(n_k - 1 \). However, if we require all multiparticle states to be normalized, so that \(\langle n_k | n_k \rangle = 1 \), the states \(a^\dagger(k) | n_k \rangle \) and \(a(k) | n_k \rangle \) do not produce normalized states. Rather, we have

\[a^\dagger(k) | n_k \rangle = A | n_k + 1 \rangle \quad (3) \]
\[a(k) | n_k \rangle = B | n_k - 1 \rangle \quad (4) \]

for some constants \(A \) and \(B \) that are determined by requiring normalization.

To find \(A \) and \(B \), we can take the modulus of the states above. We get (we’ll leave off the \((k) \) dependence of the \(a^\dagger \) and \(a \) operators to save typing; everything in what follows occurs at wave number \(k \); we’ll also assume \(A \) and \(B \) are real, although they could also be multiplied by some phase factor \(e^{i\alpha} \), but this just complicates things unnecessarily). By using the commutation relation

\[[a, a^\dagger] = 1 \quad (5) \]

we get, from \(^3\)
\[\langle n_k | aa^\dagger | n_k \rangle = A^2 \langle n_k + 1 | n_k + 1 \rangle = A^2 \] (6)
\[\langle n_k | a^\dagger a | n_k \rangle = \langle n_k | a^\dagger a + 1 | n_k \rangle \] (7)
\[\quad = \langle n_k | N_a + 1 | n_k \rangle \] (8)
\[\quad = \langle n_k + 1 | n_k | n_k \rangle \] (9)
\[\quad = (n_k + 1) \] (10)
\[A = \sqrt{n_k + 1} \] (11)

Therefore
\[a^\dagger (k) | n_k \rangle = \sqrt{n_k + 1} | n_k + 1 \rangle \] (12)

For the annihilation operator, we have from (4):
\[\langle n_k | a^\dagger a | n_k \rangle = B^2 \langle n_k - 1 | n_k - 1 \rangle = B^2 \] (13)
\[\langle n_k | a^\dagger a | n_k \rangle = \langle n_k | N_a | n_k \rangle \] (14)
\[\quad = n_k \langle n_k | n_k \rangle \] (15)
\[\quad = n_k \] (16)
\[B = \sqrt{n_k} \] (17)

Therefore
\[a (k) | n_k \rangle = \sqrt{n_k} | n_k - 1 \rangle \] (18)

This relation implies that applying \(a (k) \) to a state that contains no particles with energy \(\omega_k \) (that is, where \(n_k = 0 \)) produces 0. In particular, if we apply \(a (k) \) to the vacuum state, we end up with no state at all:
\[a (k) | 0 \rangle = 0 \] (19)

Note that \(| 0 \rangle \) and 0 aren’t the same thing: \(| 0 \rangle \) is a quantum state with no particles in it, while 0 is mathematically zero, that is, nothing. As an analogy, \(| 0 \rangle \) is like having a bucket with nothing in it, while 0 corresponds to removing the bucket as well.

We can repeat exactly the same calculations for the antiparticle operators \(b^\dagger \) and \(b \) and get the results
\[b^\dagger (k) | \bar{n}_k \rangle = \sqrt{\bar{n}_k + 1} | \bar{n}_k + 1 \rangle \] (20)
\[b (k) | \bar{n}_k \rangle = \sqrt{\bar{n}_k} | \bar{n}_k - 1 \rangle \] (21)
PINGBACKS

Pingback: [Feynman propagator for scalar fields](#)