HAMILTONIAN FOR COMPLEX SCALAR FIELD

Here we revisit the complex scalar field we considered earlier. The Lagrangian density is

\[\mathcal{L} = \left(\partial_\mu \phi \right)^\dagger \left(\partial^\mu \phi \right) - m^2 \phi^\dagger \phi - V \left(\phi^\dagger \phi \right) \]

(1)

where \(\phi \) is the complex field, and the potential \(V \) is a function of \(\phi^\dagger \phi \), so it is a real function. The Hamiltonian density is then defined as

\[\mathcal{H} \equiv \Pi_A \Phi^A - \mathcal{L} \]

(2)

where \(\Pi_A \) is the conjugate momentum for field \(\Phi^A \), defined as

\[\Pi_A \equiv \frac{\delta \mathcal{L}}{\delta \dot{\Phi}^A} \]

(3)

In our case, there are two fields, \(\phi \) and \(\phi^\dagger \). We can rewrite (1) as

\[\mathcal{L} = \dot{\phi}^\dagger \dot{\phi} - |\nabla \phi|^2 - m^2 \phi^\dagger \phi - V \left(\phi^\dagger \phi \right) \]

(4)

so the conjugate momenta are

\[\Pi = \int d^3 y \dot{\phi}^\dagger (\mathbf{y}, t) \delta (\mathbf{x} - \mathbf{y}) \]

(5)

\[= \dot{\phi}^\dagger (\mathbf{x}, t) \]

(6)

\[\Pi^\dagger = \dot{\phi} (\mathbf{x}, t) \]

(7)

The Hamiltonian density is therefore

\[\mathcal{H} = \dot{\phi}^\dagger \dot{\phi} + \dot{\phi}^\dagger \dot{\phi} - \left(\dot{\phi}^\dagger \dot{\phi} - |\nabla \phi|^2 - m^2 \phi^\dagger \phi - V \left(\phi^\dagger \phi \right) \right) \]

(8)

\[= \dot{\phi}^\dagger \dot{\phi} + |\nabla \phi|^2 + m^2 \phi^\dagger \phi + V \left(\phi^\dagger \phi \right) \]

(9)

\[= |\dot{\phi}|^2 + |\nabla \phi|^2 + m^2 \phi^\dagger \phi + V \left(\phi^\dagger \phi \right) \]

(10)