DIRAC EQUATION: ANGULAR MOMENTUM

Link to: physicspages home page.
To leave a comment or report an error, please use the auxiliary blog.
Post date: 7 June 2018.

The angular momentum operators can be used to generate the infinitesimal transformations

\[\psi'(x) = \left(1 - \frac{i}{2} J_{\mu\nu}\omega^{\mu\nu}\right) \psi(x) \]

(1)

where the \(\omega^{\mu\nu} \) are the infinitesimal components of a Lorentz transformation.

Using the notation in L&P’s section 2.4 we have

- \(\psi(x) \) is the function \(\psi \) at spacetime point \(x \).
- \(\psi'(x) \) is the transformation of the function \(\psi \) at the same point \(x \).
- \(\psi'(x') \) is the transformation of the function \(\psi \) at the transformed point \(x' \).

From L&P’s equation 2.41, we have

\[\psi'(x) - \psi(x) = \psi'(x') - \psi(x) - \partial_\mu \psi'(x) \delta x^\mu \]

(2)

or

\[\psi'(x') = \psi'(x) + \partial_\mu \psi'(x) \delta x^\mu \]

(3)

For an infinitesimal Lorentz transformation

\[\Lambda_{\mu\nu} = g_{\mu\nu} + \omega_{\mu\nu} \]

(4)

\[x'^\mu = \Lambda_{\nu\mu} x^\nu \]

(5)

\[= x^\mu + \omega^\mu_{\nu} x^\nu \]

(6)

\[\delta x^\mu = x'^\mu - x^\mu \]

(7)

\[= \omega^\mu_{\nu} x^\nu \]

(8)

\[= \omega^{\mu\nu} x_\nu \]

(9)

We therefore have

\[\psi'(x') = \psi'(x) + \omega^{\mu\nu} x_\nu \partial_\mu \psi'(x) \]

(10)
We can now apply the transformation $\omega^{\mu\nu}$ to this equation, and keep only terms up to first order in $\omega^{\mu\nu}$:

$$\psi'(x') = \left(1 - \frac{i}{2} J_{\mu\nu} \omega^{\mu\nu}\right) \psi(x) + \omega^{\mu\nu} x_\nu \partial_\mu \psi(x)$$ \hspace{1cm} (11)

However, we also know that the LHS, under an infinitesimal Lorentz transformation, has the form

$$\psi'(x') = S(\Lambda) \psi(x)$$ \hspace{1cm} (12)

$$= \left(1 - \frac{i}{4} \sigma_{\mu\nu} \omega^{\mu\nu}\right) \psi(x)$$ \hspace{1cm} (13)

Equating the terms in $\omega^{\mu\nu}$ on both sides, we get

$$\left[-\frac{i}{2} J_{\mu\nu} + x_\nu \partial_\mu + \frac{i}{4} \sigma_{\mu\nu} \right] \omega^{\mu\nu} = 0$$ \hspace{1cm} (14)

The transformations $\omega^{\mu\nu}$ are arbitrary, but subject to the condition that $\omega^{\mu\nu} = -\omega^{\nu\mu}$. Therefore, we can swap the indexes $\mu \leftrightarrow \nu$ in this equation (and use the antisymmetry of $J_{\mu\nu}$ and $\sigma_{\mu\nu}$) to get

$$\left[-\frac{i}{2} J_{\nu\mu} + x_\mu \partial_\nu + \frac{i}{4} \sigma_{\nu\mu} \right] \omega^{\nu\mu} = -\left[-\frac{i}{2} J_{\mu\nu} - x_\mu \partial_\nu + \frac{i}{4} \sigma_{\mu\nu} \right] \omega^{\mu\nu}$$ \hspace{1cm} (15)

Subtracting the RHS from (14) we can now equate the coefficient of $\omega^{\mu\nu}$ to zero to get

$$-i J_{\mu\nu} + x_\nu \partial_\mu - x_\mu \partial_\nu + \frac{i}{2} \sigma_{\mu\nu} = 0$$ \hspace{1cm} (16)

or

$$J_{\mu\nu} = i (x_\mu \partial_\nu - x_\nu \partial_\mu) + \frac{1}{2} \sigma_{\mu\nu}$$ \hspace{1cm} (17)

The first term on the RHS is the traditional orbital angular momentum operator, and the second term represents the spin.

Pingbacks

Pingback: Pauli-Lubansky vector and spin in the Dirac equation