DIRAC EQUATION: NONUNIQUENESS OF SOLUTIONS

Link to: physicspages home page.
To leave a comment or report an error, please use the auxiliary blog.
Post date: 7 June 2018.

Using the Dirac Hamiltonian, the Dirac equation is, in terms of the gamma matrices

\[i \frac{\partial}{\partial t} \psi(x) = \gamma^0 (-i \gamma \cdot \nabla + m) \psi(x) \] (1)

Using \((\gamma^0)^2 = 1\), we can multiply by \(\gamma^0\) on the left to get

\[(i \gamma^\mu \partial_\mu - m) \psi(x) = 0 \] (2)

The operation of multiplying a vector by \(\gamma^\mu\) and summing is quite common when analyzing the Dirac equation, so a special notation called the *slash notation* is defined as a shorthand. This is

\[/a \equiv \gamma^\mu a_\mu = \gamma^\mu a^\mu \] (3)

Using this definition, the Dirac equation takes on the compact form

\[(i/ - m) \psi(x) = 0 \] (4)

The gamma matrices are \(4 \times 4\) matrices which satisfy the conditions

\[\{\gamma^\mu, \gamma^\nu\} = 2g^{\mu\nu} \] (5)

\[(\gamma^\mu)^\dagger = \gamma^0 \gamma^\mu \gamma^0 \] (6)

If we define an alternative set of gamma matrices by

\[\tilde{\gamma}^\mu = U \gamma^\mu U^\dagger \] (7)

where \(U\) is a unitary matrix, so that \(U^\dagger = U^{-1}\), then 5 and 6 are still satisfied. For example
\[\{ \tilde{\gamma}^\mu, \tilde{\gamma}^\nu \} = U \gamma^\mu U^\dagger U \gamma^\nu U^\dagger + U \gamma^\nu U^\dagger U \gamma^\mu U^\dagger \]
\[= U \gamma^\mu \gamma^\nu U^\dagger + U \gamma^\nu \gamma^\mu U^\dagger \]
\[= U \{ \gamma^\mu, \gamma^\nu \} U^\dagger \]
\[= 2Ug_{\mu\nu}U^\dagger \]
\[= 2U \gamma^\mu \gamma^\nu \]
\[= 2g_{\mu\nu} \]

where the penultimate line follows from the fact that \(g_{\mu\nu} \) commutes with any matrix since it is diagonal.

Because the gamma matrices are not unique, the solution \(\psi(x) \) (a column vector with 4 elements) is not unique either. Suppose \(\tilde{\psi}(x) \) satisfies \(2 \) with \(\gamma^\mu \) replaced by \(\tilde{\gamma}^\mu \). Then

\[(i\tilde{\gamma}^\mu \partial_\mu - m) \tilde{\psi}(x) = \left(iU \gamma^\mu U^\dagger \partial_\mu - m \right) \tilde{\psi}(x) \]
\[= \left(iU \gamma^\mu U^\dagger \partial_\mu - UmU^\dagger \right) \tilde{\psi}(x) \]
\[= U \left(i\gamma^\mu \partial_\mu - m \right) U^\dagger \tilde{\psi}(x) \]

This result is equivalent to \(2 \) if \(\tilde{\psi}(x) = U\psi(x) \).

Pingbacks

Pingback: [Dirac equation: lorentz covariance](#)
Pingback: [Gamma matrices: Objects behaving like vectors or tensors](#)
Pingback: [Dirac spinors: normalization](#)