DIRAC SPINORS: GORDON IDENTITY

The Dirac spinors satisfy the relations

\begin{align}
(p - m) u_s(p) &= 0 \\
(p + m) v_s(p) &= 0 \\
\overline{u}_s(p)(p - m) &= 0 \\
\overline{v}_s(p)(p + m) &= 0
\end{align}

where a barred spinor is defined by

\[\overline{\psi} \equiv \psi^\dagger \gamma^0 \]

We’ve seen that these spinors satisfy the identities:

\begin{align}
\overline{u}_s(p) p^\mu u_r(p) &= m \overline{u}_s(p) \gamma^\mu u_r(p) \\
\overline{v}_s(p) p^\mu v_r(p) &= -m \overline{v}_s(p) \gamma^\mu v_r(p)
\end{align}

The Gordon identity relates spinors at different momenta. We can derive it using the properties of the \text{gamma matrices}. To streamline the notation, I’ll use the following definitions:

\begin{align}
u &\equiv u_s(p) \\
u' &\equiv \overline{u}_s(p')
\end{align}

with a similar notation for \(v\) and \(v'\). The subscript \(s\) can be 1 or 2. Multiply \(\gamma^\mu\) on the left by \(\overline{u}' \gamma^\mu\):

\[\overline{u}' \gamma^\mu \gamma^\alpha p_\alpha u = m \overline{u}' \gamma^\mu u \]

Now multiply \(\gamma^\mu\) (with momentum \(p'\)) on the right by \(\gamma^\mu u\):

\[\overline{u}' \gamma^\alpha p'_\alpha \gamma^\mu u = m \overline{u}' \gamma^\mu u \]
Now add these two equations:
\[\mp' \left(\gamma^\mu \gamma^\alpha p_\alpha + \gamma^\alpha \gamma'^\mu p'_\alpha \right) u = 2m\mp' \gamma^\mu u \]
(12)

Using the anticommutator
\[\{\gamma^\mu, \gamma^\alpha\} = 2g^{\mu\alpha} \]
(13)

Now consider (using the definition of \(\sigma^{\mu\alpha} \)):
\[-i\sigma^{\mu\alpha} q_\alpha = -i \frac{i}{2} (\gamma^\mu \gamma^\alpha - \gamma^\alpha \gamma^\mu) (p_\alpha - p'_\alpha) \]
(14)
\[= \frac{1}{2} (\gamma^\mu \gamma^\alpha - 2g^{\alpha\mu} + \gamma^\mu \gamma^\alpha) p_\alpha + \frac{1}{2} (\gamma^\alpha \gamma'^\mu - 2g^{\mu\alpha} + \gamma^\alpha \gamma'^\mu) p'_\alpha \]
(15)
\[= \gamma^\mu \gamma^\alpha p_\alpha + \gamma^\alpha \gamma'^\mu p'_\alpha - (p + p')^\mu \]
(16)

The first two terms are the same as the quantity in parentheses in (12) so, substituting this back into (12) we have
\[\mp' \gamma^\mu u = \frac{1}{2m} \mp' \left[(p + p')^\mu - i\sigma^{\mu\alpha} q_\alpha \right] u \]
(18)

We can get a similar expression involving \(v \) by replacing \(m \) by \(-m\):
\[\mp' \gamma^\mu v = -\frac{1}{2m} \mp' \left[(p + p')^\mu - i\sigma^{\mu\alpha} q_\alpha \right] v \]
(19)

This is the Gordon identity.