EXPLICIT SOLUTIONS OF DIRAC EQUATION IN
DIRAC-PAULI REPRESENTATION

Link to: physicspages home page.
To leave a comment or report an error, please use the auxiliary blog.
Post date: 14 June 2018.
References: Amitabha Lahiri & P. B. Pal, A First Book of Quantum Field
Theory, Second Edition (Alpha Science International, 2004) - Chapter 4,
Problem 4.11.
The solution of the Dirac equation for a free particle is

\[\psi(x) \sim \begin{cases}
 u_s(p) e^{-ip \cdot x} \\
 v_s(p) e^{ip \cdot x}
\end{cases} \]

(1)

where \(u_s \) and \(v_s \) are 4-component spinors and \(s = + \) or \(- \). These spinors satisfy

\[(\gamma^0 - m) u_s(p) = 0 \]

(2)

\[(\gamma^0 + m) v_s(p) = 0 \]

(3)

To find explicit forms for the spinors, we need an explicit representation
of the gamma matrices. One such representation is the Dirac-Pauli repre-
sentation in which the matrices are given by

\[\gamma^0 = \begin{bmatrix} I & 0 \\ 0 & -I \end{bmatrix} \]

(4)

\[\gamma^i = \begin{bmatrix} 0 & \sigma^i \\ -\sigma^i & 0 \end{bmatrix} \]

(5)

where the \(\sigma^i \) are the Pauli matrices

\[\sigma^1 = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}; \quad \sigma^2 = \begin{bmatrix} 0 & -i \\ i & 0 \end{bmatrix}; \quad \sigma^3 = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} \]

(6)

Each of the entries in (4) and (5) is a \(2 \times 2 \) matrix, while the entries in the
Pauli matrices are ordinary numbers. The four-vector \(p \) has the general form

\[p = (E_p, p) \]

(7)

where
\[E_p = \sqrt{p^2 + m^2} \]

(8)

With the particular representation of the gamma matrices, we have

\[\gamma_0 E_p - \gamma \cdot p - mI = \left[\begin{array}{cc} E_p - m & -\sigma \cdot p \\ \sigma \cdot p & -E_p - m \end{array} \right] \]

(9)

(10)

Plugging this into (8) results in

\[(E_p - m) \phi_t - \sigma \cdot p \phi_b = 0 \]

(11)

\[\sigma \cdot p \phi_t - (E_p + m) \phi_b = 0 \]

(12)

where \(\phi_t \) is a column vector with the top two components of \(u_s \) and \(\phi_b \) contains the bottom two components of \(u_s \). Each term in the equations \(\Pi \) is a two-component vector, since it is the sum of terms containing the product of a \(2 \times 2 \) matrix and a 2-component column vector.

To find \(u_s \), we assume that everything in \(\Pi \) is specified except for \(\phi_t \) and \(\phi_b \), so these two equations comprise a system of two equations in two unknowns. This system has a solution if the determinant of the coefficients is zero, which we can verify.

\[
\begin{vmatrix}
E_p - m & -\sigma \cdot p \\
\sigma \cdot p & -E_p - m
\end{vmatrix} = -(E_p - m)(E_p + m) + (\sigma \cdot p)^2
\]

(13)

\[
= -E_p^2 + m^2 + (\sigma \cdot p)^2
\]

(14)

\[
= -p^2 I + (\sigma \cdot p)^2
\]

(15)

The last term can be worked out using (6):

\[
(\sigma \cdot p)^2 = \begin{bmatrix}
p^3 & p^1 - ip^2 \\
p^1 + ip^2 & -p^3
\end{bmatrix}^2
\]

(16)

\[
= \begin{bmatrix}
p^2 & 0 \\
0 & p^2
\end{bmatrix}
\]

(17)

\[
= p^2 I
\]

(18)

Plugging this into (15) we have

\[
\begin{vmatrix}
E_p - m & -\sigma \cdot p \\
\sigma \cdot p & -E_p - m
\end{vmatrix} = 0
\]

(19)

as required.
From the second of [11] we have

$$\phi_b = \frac{\sigma \cdot p}{E_p + m} \phi_t$$ \hspace{1cm} (20)

so the solution is

$$u_{\pm}(p) = A \left[\begin{array}{c} \chi_{\pm} \\ \frac{\sigma \cdot p}{E_p + m} \chi_{\pm} \end{array} \right]$$ \hspace{1cm} (21)

where A is a constant determined by the normalization condition

$$u_{r}^\dagger(p) u_{s}(p) = v_{r}^\dagger(p) v_{s}(p) = 2E_p \delta_{rs}$$ \hspace{1cm} (22)

The 2-component vectors χ_{\pm} can in fact be any pair of linearly independent, normalized vectors. In this case, the normalization constant A is

$$A = \sqrt{E_p + m}$$ \hspace{1cm} (23)

For the particular solution in L&P they choose

$$\chi_{+} = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$ \hspace{1cm} (24)

$$\chi_{-} = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$ \hspace{1cm} (25)

which gives

$$u_{\pm}(p) = \sqrt{E_p + m} \left[\begin{array}{c} \chi_{\pm} \\ \frac{\sigma \cdot p}{E_p + m} \chi_{\pm} \end{array} \right]$$ \hspace{1cm} (26)

We can go through a similar argument to find v_{\pm}, and with the same choice of χ_{\pm}, we have

$$v_{\pm}(p) = \pm \sqrt{E_p + m} \left[\begin{array}{c} \frac{\sigma \cdot p}{E_p + m} \chi_{\pm} \\ \chi_{\mp} \end{array} \right]$$ \hspace{1cm} (27)

The swapping of χ_{+} with χ_{-} is just a convention.

Pingbacks

Pingback: Explicit solutions of Dirac equation in Dirac-Pauli representation
Pingback: Chirality projection operator and eigenvectors of
Pingback: Spin projection operators in the Dirac equation
Pingback: Spin projection operators in the Dirac equation for a particle at rest
Pingback: Parity transformation of single particle and antiparticle states