We’ll revisit here the helicity operator in the Dirac equation. Helicity is defined as the component of the spin parallel to the particle’s momentum. For a massive particle (that is, one travelling at less than the speed of light), the spin can be oriented at some angle other than parallel to the momentum, so the helicity is defined as the projection of the spin onto the momentum. The operator is defined as

$$\Sigma_p \equiv \frac{\Sigma \cdot p}{|p|} \tag{1}$$

where Σ is a 3-vector defined in terms of the spin matrices as

$$\Sigma \equiv (\sigma^{23}, \sigma^{31}, \sigma^{12}) \tag{2}$$

which amounts to the components of spin along the x, y and z axes. The quantity p is the magnitude of the 3-momentum:

$$p \equiv |p| \tag{3}$$

The helicity operator can be used to create a helicity projection operator, which projects out particles with spin parallel or antiparallel to the momentum. It is defined as

$$\Pi_{\pm}(p) \equiv \frac{1}{2} (1 \pm \Sigma_p) \tag{4}$$

The helicity projection operators commute with the energy projection operators Λ_{\pm}, so it is possible to find a set of vectors that are simultaneous eigenstates of both operators. We’ve already seen that the states
are eigenstates of Λ_{\pm}, provided that χ_{\pm} are a pair of orthonormal 2-component vectors. Thus the problem becomes that of finding which particular set of χ_{\pm} make u_{\pm} and v_{\pm} eigenstates of Π_{\pm}. In the problem statement in L&P, we are given the pair

$$
\chi^+ = \frac{1}{\sqrt{2p(p+p_z)}} \begin{bmatrix} p + p_z \\ p_x + ip_y \end{bmatrix}
$$

(7)

$$
\chi^- = \frac{1}{\sqrt{2p(p+p_z)}} \begin{bmatrix} -p_x + ip_y \\ p + p_z \end{bmatrix}
$$

(8)

where the factor $\frac{1}{\sqrt{2p(p+p_z)}}$ is just a normalization factor, required so that $\chi_{\pm}^\dagger \chi_{\pm} = 1$. Thus to show that these χ_{\pm} are eigenstates of Π_{\pm}, we can ignore the normalization factor and just show that the 2-component vectors are the required eigenstates. In what follows, we’ll use the Dirac-Pauli representation of the gamma matrices, since the solutions were derived using this form. Using this representation, we can calculate Σ_p directly using the gamma matrices, since

$$
\sigma^{ij} = i\gamma^i \gamma^j
$$

(9)

and the spatial gamma matrices are given by

$$
\gamma^i = \begin{bmatrix} 0 & \sigma^i \\ -\sigma^i & 0 \end{bmatrix}
$$

(10)

where the σ^i are the Pauli matrices

$$
\sigma^1 = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}; \quad \sigma^2 = \begin{bmatrix} 0 & -i \\ i & 0 \end{bmatrix}; \quad \sigma^3 = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}
$$

(11)

Multiplying everything out, we get

$$
\Sigma_p = \frac{1}{p} \begin{bmatrix} p_z & p_x - ip_y & 0 & 0 \\ p_x + ip_y & -p_z & 0 & 0 \\ 0 & 0 & p_z & p_x - ip_y \\ 0 & 0 & p_x + ip_y & -p_z \end{bmatrix}
$$

(12)

This gives
Because both Π_\pm are block diagonal matrices with the two blocks being identical 2×2 matrices, and the vectors u_\pm and v_\pm have the two component vectors χ_\pm in both their upper and lower 2 slots, we can work out the top-left 2×2 block of Π_\pm multiplied by χ_\pm and thus deal with the simpler problem of multiplying 2×2 matrices instead of 4×4. If χ_+, say, is an eigenvector of the top-left 2×2 block of Π_+, then both u_+ and v_- will be eigenvectors of the full 4×4 matrix Π_+. I’ll continue to use the notation Π_\pm below but this now refers just to the top-left 2×2 block of Π_\pm in each case. We have:

$$\Pi_+ = \frac{1}{2p} \begin{bmatrix} p + p_z & p_x - ip_y & 0 & 0 \\
p_x + ip_y & p - p_z & 0 & 0 \\
0 & 0 & p + p_x & p - ip_y \\
0 & 0 & p - p_z & p - p_z \end{bmatrix}$$

(13)

$$\Pi_- = \frac{1}{2p} \begin{bmatrix} p - p_z & -p_x + ip_y & 0 & 0 \\
-p_x - ip_y & p + p_z & 0 & 0 \\
0 & 0 & p - p_z & -p_x + ip_y \\
0 & 0 & -p_x - ip_y & p + p_z \end{bmatrix}$$

(14)

Thus χ_+ is indeed an eigenvector of the top-left 2×2 block of Π_+ and therefore u_+ is an eigenvector of the full 4×4 matrix Π_+. Doing the other calculations, we get:

$$\Pi_+ \chi_+ = \frac{1}{2p \sqrt{2p (p + p_z)}} \begin{bmatrix} p + p_z & p_x - ip_y \\
p_x + ip_y & p - p_z \end{bmatrix} \begin{bmatrix} p + p_x & p - ip_y \\
p_x + ip_y & p - p_z \end{bmatrix}$$

(15)

$$= \frac{1}{2p \sqrt{2p (p + p_z)}} \begin{bmatrix} p^2 + 2pp_z + p_z^2 + p_x^2 + p_y^2 \\
2p (p_x + ip_y) \end{bmatrix}$$

(16)

$$= \frac{1}{\sqrt{2p (p + p_z)}} \begin{bmatrix} p + p_z \\
p_x + ip_y \end{bmatrix}$$

(17)

$$= \chi_+$$

(18)
Comparing with 5, we see that u_+ and v_- are eigenvectors of Π_+ with eigenvalue $+1$ and of Π_- with eigenvalue 0, u_- and v_+ are eigenvectors of Π_- with eigenvalue 1, and of Π_+ with eigenvalue 0.

PINGBACKS

Pingback: [Helicity projection operator: Properties and commutators](#)
Pingback: [Helicity and chirality are equal for massless fermions](#)
Pingback: [Spin projection operators in the Dirac equation](#)