BOSON DECAY RATE: SUM OVER SPINS

Link to: physicspages home page.
To leave a comment or report an error, please use the auxiliary blog.
Post date: 10 Aug 2018.

In the calculation of the decay rate of a boson via the Yukawa interaction, we come across the term

\[\Sigma_{\text{spin}} = \sum_{s,s'} |\overline{u}_s (p) v_{s'} (p')|^2 \]

(1)

\[= \sum_{s,s'} [\overline{u}_s (p) v_{s'} (p')][\overline{u}_s (p) v_{s'} (p')]^* \]

(2)

L&P work out the complex conjugate term in their equation 7.13, but we can work out a more general case as follows. For a general 4×4 matrix F we wish to find $[\pi F v]^*$. I’ve suppressed the dependence of u and v on spin and momentum to make the notation easier. First, note that since π is a 1×4 matrix (a row vector), F is a 4×4 matrix and v is a 4×1 matrix (a column vector), the product $\pi F v$ is just a single number (or a 1×1 matrix if you prefer), so its complex conjugate is also its hermitian conjugate. Therefore

\[[\overline{u} F v]^* = [\overline{u} F v]^\dagger \]

(3)

\[= \left[u^\dagger \gamma_0 F v \right]^\dagger \]

(4)

\[= v^\dagger F^\dagger \gamma_0 u \]

(5)

\[= v^\dagger \gamma_0 \gamma_0 F^\dagger \gamma_0 u \]

(6)

\[= \overline{v} F^\dagger u \]

(7)

where

\[F^\dagger \equiv \gamma_0 F^\dagger \gamma_0 \]

(8)

and we’ve used the properties of γ_0: $\gamma_0^\dagger = \gamma_0$ and $(\gamma_0)^2 = I$.

When we use this result in (2) we have

When we multiply a 4×1 matrix into a 1×4 matrix, the result is a 4×4 matrix.
BOSON DECAY RATE: SUM OVER SPINS

\[\Sigma_{\text{spin}} = \sum_{s,s'} \left[(\overline{u}_s(p))_\alpha (v_{s'}(p'))_\beta \right] \left[(\overline{v}_{s'}(p'))_\beta (u_s(p))_\alpha \right] \]
\[= \left[\sum_s u_s(p) \overline{u}_s(p) \right] \left[\sum_{s'} v_{s'}(p') \overline{v}_{s'}(p') \right] \]

(9)

where the subscripts \(\alpha\) and \(\beta\) refer to the components of the matrices.

Again, we can work out this term for the more general case.

\[\sum_{s,s'} |u_s(p) F v_{s'}(p')|^2 = \sum_{s,s'} \left[(\overline{u}_s(p))_\alpha F_{\alpha\beta} (v_{s'}(p'))_\beta \right] \left[(\overline{v}_{s'}(p'))_\beta F^\dagger_{\delta\epsilon} (u_s(p))_\epsilon \right] \]

(11)

\[= \left[\sum_s u_s(p) \overline{u}_s(p) \right] F_{\alpha\beta} \left[\sum_{s'} v_{s'}(p') \overline{v}_{s'}(p') \right] F^\dagger_{\delta\epsilon} \]

(12)

We can now use the results

\[\sum_s u_s(p) \overline{u}_s(p) = \not{p} + m \]
(13)

\[\sum_s v_s(p) \overline{v}_s(p) = \not{p} - m \]
(14)

We get

\[\sum_{s,s'} |u_s(p) F v_{s'}(p')|^2 = (\not{p} + m) F_{\alpha\beta} (\not{p}' - m) F^\dagger_{\delta\epsilon} \]

(15)

Note that summing over the Greek subscripts means that the four terms are just a matrix product, with one extra sum over the first and last indexes. That is

\[(\not{p} + m) F_{\alpha\beta} (\not{p}' - m) F^\dagger_{\delta\epsilon} = \sum_\epsilon \left[(\not{p} + m) F (\not{p}' - m) F^\dagger \right]_{\epsilon\epsilon} \]

(16)

\[= \text{Tr} \left[(\not{p} + m) F (\not{p}' - m) F^\dagger \right] \]

(17)

PINGBACKS

Pingback: Boson decay with modified Yukawa interaction
Pingback: Muon decay: Feynman amplitude
Pingback: Charged pion decay
Pingback: Electron-electron & Positron-positron scattering