PARITY TRANSFORMATION FOR MASSLESS FERMIONS

By requiring the Dirac Lagrangian to be invariant under parity, L&P show that the parity matrix must satisfy the three conditions

\[P^\dagger P = 1 \] \hspace{1cm} (1)
\[\gamma_0 P^\dagger \gamma_0 \gamma_i P = -\gamma_i \] \hspace{1cm} (2)
\[\gamma_0 P^\dagger \gamma_0 = 1 \] \hspace{1cm} (3)

Since the last condition arises from the mass term in the Lagrangian, if the fermion is massless so that \(m = 0 \), we need not satisfy this last condition on \(P \). In this case, we can choose

\[P = \eta_P' \gamma_0 \gamma_5 \] \hspace{1cm} (4)

where \(\eta_P' \) is a parity phase factor. We can check that this satisfies the first two conditions by using the properties of the gamma matrices. For the first condition, we have (we’ll take \(\eta_P' = \pm 1 \) in what follows):

\[P^\dagger P = \gamma_5^\dagger \gamma_0^\dagger \gamma_0 \gamma_5 \]
\[= \gamma_5 \gamma_0 \gamma_5 \]
\[= \gamma_5^2 \]
\[= 1 \] \hspace{1cm} (8)

where we’ve used the facts that \(\gamma_5^\dagger = \gamma_5 \), \(\gamma_0^\dagger = \gamma_0 \) and \(\gamma_5^2 = \gamma_0^2 = 1 \). For the second condition, we have
\[\gamma_0 \gamma_5 \gamma_i \gamma_0 \gamma_5 \gamma_0 \gamma_5 \gamma_i = \gamma_0 \gamma_5 \gamma_i \gamma_0 \gamma_5 \gamma_i \gamma_0 \gamma_5 \gamma_i \gamma_0 \gamma_5 \gamma_i = -\gamma_0 \gamma_5 \gamma_i \gamma_0 \gamma_5 \gamma_i \gamma_0 \gamma_5 \gamma_i = -\gamma_i \gamma_0 \gamma_5 \gamma_i \gamma_0 \gamma_5 \gamma_i \gamma_0 \gamma_5 \gamma_i = -\gamma_i \gamma_0 \gamma_5 \gamma_i \gamma_0 \gamma_5 \gamma_i \gamma_0 \gamma_5 \gamma_i = -\gamma_i \]

In the third line, we used the fact that the anticommutators are \(\{\gamma_5, \gamma_i\} = \{\gamma_0, \gamma_i\} = 0\).

We can now see what effect this has on a couple of interaction terms that could appear in the Lagrangian. First, suppose we have the interaction term

\[\mathcal{L}_{\text{int}} = -\hbar \overline{\psi} \psi \phi \]

where \(\psi\) is a fermion field and \(\phi\) is a scalar field. The fermion field transforms according to

\[\psi_P(x) = P \psi(\tilde{x}) \]

where

\[\tilde{x} \equiv (t, -x) \]

Using (4) we have

\[\mathcal{L}_{\text{int}} \rightarrow -\hbar \overline{\psi}_P \psi P \phi P \]

For the first factor, we have

\[\overline{\psi}_P(x) = \psi_P^\dagger(\tilde{x}) \gamma_0 \]

\[= \psi^\dagger(\tilde{x}) P^\dagger \gamma_0 \]

\[= \overline{\psi}(\tilde{x}) \gamma_0 P^\dagger \gamma_0 \]

\[= \eta_P \overline{\psi}(\tilde{x}) \gamma_0 \gamma_5 \gamma_0 \gamma_5 \gamma_i \]

\[= \eta_P \overline{\psi}(\tilde{x}) \gamma_0 \gamma_5 \gamma_i \]

Therefore

\[\overline{\psi} \psi \phi \rightarrow \eta_P^2 \overline{\psi}(\tilde{x}) \gamma_0 \gamma_5 \gamma_0 \gamma_5 \gamma_i \psi(\tilde{x}) \phi(\tilde{x}) \]

\[= -\overline{\psi}(\tilde{x}) \gamma_0 \gamma_5 \gamma_0 \gamma_5 \gamma_i \psi(\tilde{x}) \phi(\tilde{x}) \]

\[= -\overline{\psi}(\tilde{x}) \psi(\tilde{x}) \phi(\tilde{x}) \]

Thus for the transformation to be invariant under parity, we must have
\[\phi_P(x) = -\phi(\bar{x}) \]

(26)

which makes \(\phi \) a pseudoscalar field.

For the interaction term

\[L_{\text{int}} = -h' \bar{\psi} \gamma_5 \psi \phi \]

(27)

we have

\[
\bar{\psi} \gamma_5 \psi \phi \rightarrow \bar{\psi}(\bar{x}) \gamma_0 \gamma_5 \gamma_0 \gamma_5 \psi(\bar{x})
\]

(28)

\[
= \bar{\psi}(\bar{x}) \gamma_5 \psi(\bar{x})
\]

(29)

Thus in this case, for parity invariance we must have

\[\phi_P(x) = +\phi(\bar{x}) \]

(30)

making \(\phi \) a scalar field.

An interaction which combines both of the above interactions, such as

\[L_{\text{int}} = -\bar{\psi}(h + h' \gamma_5) \psi \phi \]

(31)

can not be parity invariant, as the two terms require opposite parities for \(\phi \).