One of the mathematical tools used in quantum field theory is the functional and its derivative, known as a functional derivative. Just as an ordinary function takes a number as input and produces a number as output, a functional takes an entire function as input and produces a number. Many functionals are defined as integrals over the input function. The notation for a functional F with input function f is $F[f]$. For example

$$F[f] = \int_{-1}^{1} f(x) \, dx \quad (1)$$

If $f(x) = x^2$

$$F[x^2] = \int_{-1}^{1} x^2 \, dx \quad (2)$$

$$= \frac{2}{3} \quad (3)$$

Just as a regular function has a derivative with respect to its argument, a functional can have a functional derivative with respect to its input function. In a regular derivative, the idea is to change the independent variable (x for a function $f(x)$) a little bit (dx) and see how the function changes in response. A functional derivative changes the entire input function by a small amount $\delta f(x)$ and observes how the functional changes in response.

Obviously, there are an infinite number of ways we could change $f(x)$ in the functional; in the functional above, we might increase $f(x)$ a bit between -1 and 0 and decrease it a bit between 0 and $+1$, or we might increase or decrease it a bit over the entire range and so on. We clearly need something a bit more definite if we’re to get a consistent definition of a functional derivative.

The definition used in Lancaster & Blundell is

$$\delta f(x) = \epsilon \delta (x - x_0) \quad (4)$$
where $\delta (x - x_0)$ is the Dirac delta function and ϵ is some small number. The quantity x_0 is some value of x within the domain of $f(x)$. The idea is that the small change in $f(x)$ occurs at one point only (at $x = x_0$). With this definition, we can now define the functional derivative as

$$\frac{\delta F}{\delta f(x_0)} (\epsilon) \equiv \lim_{\epsilon \to 0} \frac{F[f(x) + \epsilon \delta (x - x_0)] - F[f(x)]}{\epsilon}$$ \hspace{1cm} (5)$$

Note that δ is used in the notation $\frac{\delta F}{\delta f(x_0)}$ for a functional derivative, replacing d in an ordinary derivative $\frac{df}{dx}$.

Example 1. For example, with $F[f]$ defined as in [1], we get

$$\frac{\delta F[f]}{\delta f(x_0)} = \lim_{\epsilon \to 0} \frac{1}{\epsilon} \left[\int_{-1}^{1} (f(x) + \epsilon \delta (x - x_0)) dx - \int_{-1}^{1} f(x) dx \right]$$

$$= \int_{-1}^{1} \delta (x - x_0) dx$$

The value of the derivative depends on whether x_0 is within the range of integration, so we get

$$\frac{\delta F[f]}{\delta f(x_0)} = \begin{cases} 1 & \text{if } -1 < x_0 < 1 \\ 0 & \text{otherwise} \end{cases}$$ \hspace{1cm} (8)$$

Example 2. Define the functional

$$H[f] = \int_{a}^{b} G(x, y) f(y) dy$$

Then

$$\frac{\delta H[f]}{\delta f(z)} = \lim_{\epsilon \to 0} \frac{1}{\epsilon} \left[\int_{a}^{b} G(x, y) (f(y) + \epsilon \delta (y - z)) dy - \int_{a}^{b} G(x, y) f(y) dy \right]$$

$$= \int_{a}^{b} G(x, y) \delta (y - z) dy$$

$$= G(x, z)$$ \hspace{1cm} (12)$$

assuming $a < z < b$, zero otherwise.

Example 3. Returning to [1], we can now find a second derivative of $F[f^3]$. We start with the first derivative:
\[\frac{\delta F[f^3]}{\delta f(x_0)} = \lim_{\epsilon \to 0} \frac{1}{\epsilon} \left[\int_{-1}^{1} (f(x) + \epsilon \delta(x - x_0))^3 \, dx - \int_{-1}^{1} f^3(x) \, dx \right] \]

(13)

\[= 3 \int_{-1}^{1} f^2(x) \delta(x - x_0) \, dx \]

(14)

\[= 3f^2(x_0) \]

(15)

where in going from line 1 to line 2, we kept only the term first order in \(\epsilon \) since higher order terms vanish in the limit \(\epsilon \to 0 \). The result assumes \(-1 < x_0 < 1 \) (the answer is 0 otherwise). Now we can take a second derivative by just applying the definition again.

\[\frac{\delta F[f^3]}{\delta f(x_0) \, \delta f(x_1)} = \lim_{\epsilon \to 0} \frac{1}{\epsilon} \left[\int_{-1}^{1} \left(\frac{\partial}{\partial y} \left(f(x) + \epsilon \delta(x - x_1) \right) \right)^2 \, dy - \int_{-1}^{1} f^2(x) \, dy \right] \]

(16)

\[= 6f(x_0) \delta(x_0 - x_1) \]

(17)

Example 4. Now suppose we have the functional

\[J[f] = \int_{a}^{b} \left(\frac{\partial f}{\partial y} \right)^2 \, dy \]

(18)

The derivative is

\[\frac{\delta J[f]}{\delta f(x)} = \lim_{\epsilon \to 0} \frac{1}{\epsilon} \left[\int_{a}^{b} \left(\frac{\partial}{\partial y} \left(f + \epsilon \delta(y - x) \right) \right)^2 \, dy - \int_{a}^{b} \left(\frac{\partial f}{\partial y} \right)^2 \, dy \right] \]

(19)

\[= 2 \int_{a}^{b} f'(y) \delta'(y - x) \, dy \]

(20)

where a prime indicates a derivative with respect to \(y \). We can solve this using integration by parts:

\[\int_{a}^{b} f'(y) \delta'(y - x) \, dy = f'(y) \delta(y - x) \bigg|_{a}^{b} - \int_{a}^{b} f''(y) \delta(y - x) \, dy \]

(21)

Provided that neither \(a \) nor \(b \) coincides with \(x \), the delta function in the integrated term is zero at both limits so the first term vanishes and we’re left with

\[\int_{a}^{b} f'(y) \delta'(y - x) \, dy = -f''(x) \]

(22)

so
\[
\frac{\delta J[f]}{\delta f(x)} = -2 \frac{\partial^2 f}{\partial x^2}
\] \hfill (23)

if \(a < x < b\), zero otherwise.

[Incidentally, if you’re worried about switching the derivative from \(y\) to \(x\) in

\[
\int_a^b f''(y) \delta (y - x) \, dy = \int_a^b \frac{\partial^2 f}{\partial y^2} \delta (y - x) \, dy = \frac{\partial^2 f}{\partial x^2}
\] \hfill (24)

it doesn’t matter whether we take the derivative with respect to \(y\) and then set \(y = x\) or whether we set \(y = x\) first and then take the derivative with respect to \(x\). All we’re doing is using a different variable name for the same derivative operation, so the two orders of doing things are equivalent.]

PINGBACKS

Pingback: Lagrangians and the principle of least action
Pingback: Functional derivatives: more examples
Pingback: Lagrangians for elastic media
Pingback: Functional derivative: a 4-dimensional example
Pingback: Euler-Lagrange equations for particle & field theories; Lagrangian density
Pingback: Functional derivatives and the Lagrangian
Pingback: Hamilton’s equations of motion in classical field theory
Pingback: Generating functional for phi-4 theory
Pingback: Classical field theory