The Lagrangian is usually defined as a function of generalized coordinate q_i and their time derivatives \dot{q}_i. However, it sometimes can depend explicitly on the time t, so we have

$$ L = L(q_i, \dot{q}_i, t) $$

In this case, its time derivative is

$$ \frac{dL}{dt} = \frac{\partial L}{\partial q_i} \dot{q}_i + \frac{\partial L}{\partial \dot{q}_i} \ddot{q}_i + \frac{\partial L}{\partial t} $$

We can use the Euler-Lagrange equations

$$ \frac{\partial L}{\partial q_i} - \frac{d}{dt} \frac{\partial L}{\partial \dot{q}_i} = 0 $$

To convert into

$$ \frac{dL}{dt} = \frac{d}{dt} \left(\frac{\partial L}{\partial \dot{q}_i} \right) \dot{q}_i + \frac{\partial L}{\partial q_i} \ddot{q}_i + \frac{\partial L}{\partial t} $$

With the canonical momentum defined as

$$ p_i \equiv \frac{\partial L}{\partial \dot{q}_i} $$

this is

$$ \frac{dL}{dt} = \frac{d}{dt} (p_i \dot{q}_i) + \frac{\partial L}{\partial t} $$

or

$$ \frac{d}{dt} (p_i \dot{q}_i - L) = -\frac{\partial L}{\partial t} $$

With the usual definition of the Hamiltonian
\[H = p_i \dot{q}_i - L \]
we see that a time-dependent Lagrangian gives the relation

\[\frac{dH}{dt} = -\frac{\partial L}{\partial t} \]

(9)
(10)