POINCARÉ GROUP TRANSFORMATIONS

Link to: [physicspages home page](#).

To leave a comment or report an error, please use the auxiliary blog.


Post date: 9 Apr 2019.

[My solution of this problem differs in some of the signs from that stated in the textbook. Although the errata page given by the authors does show some corrections to the textbook, I don’t think these corrections are, in fact, correct. Comments welcome.]

The Poincaré group is the combination of the Lorentz group (with boosts and rotations) with translations. Thus an infinitesimal transformation is given by

\[ x'_{\mu} = x_{\mu} + a_{\mu} + \omega_{\mu\nu} x_{\nu} \]  

where \( a_{\mu} \) is the translation and the matrix \( \omega_{\mu\nu} \) represents the Lorentz transformation.

\[
\omega_{\mu\nu} = \begin{bmatrix}
0 & v^1 & v^2 & v^3 \\
v^1 & 0 & -\theta^3 & \theta^2 \\
v^2 & \theta^3 & 0 & -\theta^1 \\
v^3 & -\theta^2 & \theta^1 & 0
\end{bmatrix}
\]

Using a Taylor expansion, a function \( f(x) \) therefore transforms as follows:

\[ f(x') = f(x) + a_{\mu} \partial_{\mu} f(x) + \omega_{\mu\nu} x'_{\nu} \partial_{\mu} f(x) \]  

By lowering the \( \mu \) index on \( \omega_{\nu} \), we can rewrite this as

\[ f(x') = f(x) + a_{\mu} \partial_{\mu} f(x) - \omega_{\mu\nu} x_{\nu} \partial_{\mu} f(x) \]

Since

\[
\omega_{\mu\nu} = \begin{bmatrix}
0 & v^1 & v^2 & v^3 \\
-v^1 & 0 & \theta^3 & -\theta^2 \\
-v^2 & -\theta^3 & 0 & \theta^1 \\
-v^3 & \theta^2 & -\theta^1 & 0
\end{bmatrix}
\]

the matrix is antisymmetric, so \( \omega_{\mu\nu} = -\omega_{\nu\mu} \). We can therefore rewrite \( f(x') \) as
POINCARÉ GROUP TRANSFORMATIONS

\[ f\left(x'\right) = f\left(x\right) + a^\mu \partial_\mu f\left(x\right) + \frac{1}{2} \left( \omega_{\mu\nu} x^\nu \partial^\mu + \omega_{\nu\mu} x^\mu \partial^\nu \right) f\left(x\right) \quad (6) \]

\[ = f\left(x\right) + a^\mu \partial_\mu f\left(x\right) + \frac{1}{2} \left( \omega_{\mu\nu} x^\nu \partial^\mu - \omega_{\mu\nu} x^\mu \partial^\nu \right) f\left(x\right) \quad (7) \]

\[ = f\left(x\right) + a^\mu \partial_\mu f\left(x\right) + \frac{1}{2} \omega_{\mu\nu} \left( x^\nu \partial^\mu - x^\mu \partial^\nu \right) f\left(x\right) \quad (8) \]

\[ = f\left(x\right) + a^\mu \partial_\mu f\left(x\right) - \frac{1}{2} \omega_{\mu\nu} \left( x^\mu \partial^\nu - x^\nu \partial^\mu \right) f\left(x\right) \quad (9) \]

By defining

\[ p_\mu = -i \partial_\mu \quad (10) \]

\[ M^{\mu\nu} = -i \left( x^\mu \partial^\nu - x^\nu \partial^\mu \right) \quad (11) \]

we have finally

\[ f\left(x'\right) = \left[ 1 + ia^\mu p_\mu - \frac{i}{2} \omega_{\mu\nu} M^{\mu\nu} \right] f\left(x\right) \quad (12) \]

At this point, L&B relate the quantity \( M^{\mu\nu} \) to the Lorentz generators \( J^i \) and \( K^i \).

\[ J^i = \frac{1}{2} \epsilon^{ijk} M^{jk} \quad (13) \]

\[ K^i = M^0i \quad (14) \]

We can now try to derive the final result in the problem, which is to show that

\[ \Lambda = \exp \left( -i \frac{1}{2} \omega_{\mu\nu} M^{\mu\nu} \right) \quad (15) \]

where

\[ \Lambda = e^{-i \left( J \cdot \theta - K \cdot \phi \right)} \quad (16) \]

We thus need to show that

\[ J \cdot \theta = \frac{1}{2} \omega_{ij} M^{ij} \quad (17) \]

\[ K \cdot \phi = -\frac{1}{2} \left( \omega_{0i} M^{0i} + \omega_{i0} M^{i0} \right) \quad (18) \]

For the first case, we can use the earlier result.
\[ \theta^i = \frac{1}{2} \varepsilon^{ijk} \omega_{jk} \]  

(19)

Substituting this and \([13]\) into \([17]\) we have (using the antisymmetry of both \(\omega_{\mu\nu}\) and \(M^{\mu\nu}\)):

\[ J \cdot \theta = \left( \frac{1}{2} \varepsilon^{ijk} M^{jk} \right) \left( \frac{1}{2} \varepsilon^{ilm} \omega_{lm} \right) \]  

(20)

\[ = \frac{1}{4} \left[ (M^{23} - M^{32}) (\omega_{23} - \omega_{32}) + (M^{12} - M^{21}) (\omega_{12} - \omega_{21}) + (M^{31} - M^{13}) (\omega_{31} - \omega_{13}) \right] \]  

(21)

\[ = \frac{1}{4} \left[ 2M^{23} \times 2\omega_{23} + 2M^{12} \times 2\omega_{12} + 2M^{31} \times 2\omega_{31} \right] \]  

(22)

\[ = \frac{1}{2} \omega_{jk} M^{jk} \]  

(23)

where to get the factor of \(\frac{1}{2}\) in the last line, we used \(M^{23} \omega_{23} = \frac{1}{2} (M^{23} \omega_{23} + M^{32} \omega_{32})\) and so on.

For \([18]\) we assume that \(\phi\) is the rapidity which, for infinitesimals, is the same as the velocity \(v^i = \omega_{0i}\). Therefore

\[ K \cdot \phi = \omega_{0i} M^{0i} \]  

(24)

\[ = \frac{1}{2} \left( \omega_{0i} M^{0i} + \omega_{i0} M^{i0} \right) \]  

(25)

Unfortunately, this is the wrong sign when compared with \([18]\). We do get the right sign if we accept L&B’s equation 9.58, which says that

\[ v^i = \omega_{0i} = -\omega_{0i} \]  

(26)

and

\[ \theta^i = -\frac{1}{2} \varepsilon^{ijk} \omega_{jk} \]  

(27)

but given their form of the original matrix \(\omega^\mu_{\nu}\), where all the \(v^i\) entries are positive, that cannot be correct.

In the errata for the book, L&B say that their version of \([4]\) is correct, which is

\[ f \left( x' \right) = f \left( x \right) - \alpha^\mu \partial_\mu f \left( x \right) + \omega_{\mu\nu} x' \partial^\nu f \left( x \right) \]  

(28)

but that the signs for \(p_\mu\) and \(M^{\mu\nu}\) should be reversed, so we have
\[ p_\mu = i \partial_\mu \]  \hspace{1cm} \text{(29)}

\[ M^{\mu\nu} = i (x'^\mu \partial^\nu - x'^\nu \partial^\mu) \]  \hspace{1cm} \text{(30)}

If we take [27] to be correct, then the signs of the angles in [2] (and in the subsequent versions \( \omega_{\mu\nu} \) and \( \omega^{\mu\nu} \)) are reversed, which seems to be the wrong way round for rotation matrices. However, if we accept both [27] and [30], then both \( M^{jk} \) and \( \omega_{lm} \) change sign in [23], but if we accept both [26] and [30], then both the \( \omega \)s and \( M \)s change sign in [25], leaving us with a \( \mathbf{K} \cdot \Phi \) that still has the wrong sign.

Clearly something is muddled with the signs somewhere in all this, but I'm not sure where. Comments welcome.

**COMMENTS**

From Claudio at 22 Jan 2020, 12:32

Regarding the sign problem, eqn. (9.57) is written

\[
\omega^{\mu}_{\nu} = \begin{bmatrix}
0 & v^1 & v^2 & v^3 \\
v^1 & 0 & \theta^3 & -\theta^2 \\
v^2 & -\theta^3 & 0 & \theta^1 \\
v^3 & \theta^2 & -\theta^1 & 0
\end{bmatrix}
\]

in my copy of Lancaster’s book (first edition, reprinted 2014, impression 6). The signs of the thetas are swapped with regard to eqn. [2] in your solution. Also, if I see things correctly, eqn. (9.58) of Lancaster’s should read \( v^i = -\omega^0_0 \) instead of \( v^i = \omega^0_i \) (see also eqn. [26] in your solution). Finally, I’ve got \( \omega^{jk} = \omega_{jk} \) (for \( j,k = 1,2,3 \)) and, accordingly, \( \theta^i = -\frac{1}{2} \varepsilon^{ijk} \omega_{jk} = -\frac{1}{2} \varepsilon^{ijk} \omega_{jk} \), which differs by a factor of \(-1\) of eqn. [19] in your solution. Hope this helps!

From growescience at 22 Jan 2020, 14:52

The problem starts with my solution to problem 9.3, where I think they have the wrong sign for a rotation. If I use what I think is the correct sign, I get my form of the omega matrix, which is my equation [2] in problem 9.4. Everything in my post then follows on from that, giving the answer which is different from Lancaster’s.

From Claudio at 23 Jan 2020, 12:12

Indeed, the sign problem seems to originate in the signs of the angles in the lambda matrix (Lancaster’s 9.56 and 9.57). I have got the same signs as you by expanding Lancaster’s eqn. 9.27 \( D(\theta) = e^{i\mathbf{J}\theta} \) to first order as
1 − \(iJ^k\hat{\theta}^k\) and then using the \(J^k\) matrices as given by Lancaster’s 9.33 and 9.34.

Thanks for the clarification and thank you so much for physicspages !!

From growescience at 23 Jan 2020, 16:28
It’s possible. Given the confusion arising from their own errata, I’m not sure what the correct result actually is.

From Condereal at 22 Jan 2020, 21:59
I’m no expert, but I think the problem with the signs that you see when obtaining the infinitesimal generators is that in the book L&B the mix an “active” Lorentz boost with a “passive” rotation”. I think they should either user both “active” or both “passive”, but not mixing. This means that equation (9.56) in the book does not have the correct signs from the beginning.
Hope this is the case, at least for me it worked. cheers!

From growescience at 23 Jan 2020, 16:29
I glad you find the same as I did, though I have to admit I’m still confused about what the correct answer actually is.