The complex scalar field considered by L&B in their Chapter 12 is invariant under the internal transformation
\[\psi \rightarrow \psi' = e^{i\alpha} \psi \] (1)

They point out that this transformation can also be written using the unitary operator
\[U(\alpha) = e^{iQ_{Nc}\alpha} \] (2)

where \(Q_{Nc} \) is the conserved number charge operator, which is defined in terms of the Noether charge \(Q_N \) by normal ordering:
\[Q_{Nc} = -:\!Q_N\!:\] (3)

To verify that this unitary operator works correctly, we consider \(U^\dagger \psi U \) for an infinitesimal \(\alpha \). We have, keeping only terms up to first order in \(\alpha \)
\[U^\dagger(\alpha) \psi U(\alpha) = (1 - iQ_{Nc}\alpha) \psi (1 + iQ_{Nc}\alpha) \] (4)
\[= \psi - i\alpha [Q_{Nc}, \psi] \] (5)

We can now use the formula
\[[Q_N, \psi] = -iD\psi \] (6)

where
\[D\psi = \left. \frac{\partial \psi'}{\partial \alpha} \right|_{\alpha=0} = i\psi \] (7)

From (3) we have
\[[Q_{Nc}, \psi] = -[Q_N, \psi] = -\psi \] (8)

so we have
\[U^\dagger(\alpha) \psi U(\alpha) = \psi (1 + i\alpha) \] (9)
Taking α to be finite, we can apply this formula n times and let $n \to \infty$ to get

$$U^\dagger (\alpha) \psi U (\alpha) = \lim_{n \to \infty} \psi \left(1 + i \frac{\alpha}{n} \right)^n \quad (10)$$

$$= e^{i\alpha} \psi \quad (11)$$

Thus the unitary transformation is equivalent to the transformation 1.

In case you’re worried that the normal ordering done to get from Q_N to Q_{Nc} messes up the relation 8, we can see that this isn’t a problem by considering Q_{Nc} and ψ in their mode expansions. From L&B’s equations 12.5 and 12.15, we have

$$\psi (x) = \int \frac{d^3 p}{(2\pi)^{3/2} \sqrt{2E_p}} \left(a_p e^{-ip \cdot x} + b_p^\dagger e^{ip \cdot x} \right) \quad (12)$$

$$Q_{Nc} = \int d^3 q \left(n^{(a)}_{\mathbf{q}} - n^{(b)}_{\mathbf{q}} \right) \quad (13)$$

$$= \int d^3 q \left(a_{\mathbf{q}}^\dagger a_{\mathbf{q}} - b_{\mathbf{q}}^\dagger b_{\mathbf{q}} \right) \quad (14)$$

Taking the commutator explicitly and using

$$[a_p, a_{\mathbf{q}}^\dagger] = [b_p^\dagger, b_{\mathbf{q}}] = \delta (\mathbf{p} - \mathbf{q}) \quad (15)$$

with all other commutators being zero, we have

$$[Q_{Nc}, \psi] = \int \frac{d^3 p \, d^3 q}{(2\pi)^{3/2} \sqrt{2E_p}} \left\{ \left[a_{\mathbf{q}}^\dagger, a_p \right] a_q e^{-ip \cdot x} - b_q^\dagger \left[b_{\mathbf{q}}^\dagger, b_p \right] e^{ip \cdot x} \right\} \quad (16)$$

$$= \int \frac{d^3 p \, d^3 q}{(2\pi)^{3/2} \sqrt{2E_p}} \left\{ \left[a_p, a_{\mathbf{q}}^\dagger \right] a_q e^{-ip \cdot x} - b_q^\dagger \left[b_{\mathbf{q}}^\dagger, b_p \right] e^{ip \cdot x} \right\} \quad (17)$$

$$= \int \frac{d^3 p \, d^3 q}{(2\pi)^{3/2} \sqrt{2E_p}} \left\{ -\delta (\mathbf{p} - \mathbf{q}) a_q e^{-ip \cdot x} - b_q^\dagger \delta (\mathbf{p} - \mathbf{q}) e^{ip \cdot x} \right\} \quad (18)$$

$$= -\int \frac{d^3 p}{(2\pi)^{3/2} \sqrt{2E_p}} \left(a_p e^{-ip \cdot x} + b_p^\dagger e^{ip \cdot x} \right) \quad (19)$$

$$= -\psi \quad (20)$$