ELECTROMAGNETISM: LAGRANGIAN USING PROJECTION OPERATORS

Link to: physicspages home page.
To leave a comment or report an error, please use the auxiliary blog.
Post date: 13 May 2019.

In their section 13.3, L&B show that the projection of a four-vector along a given four-momentum p^μ is given by the longitudinal projection operator

$$P_{L}^{\mu \nu} = \frac{p^\mu p^\nu}{p^2}$$ \hspace{1cm} (1)

The projection transverse to the momentum is then given by

$$P_{T}^{\mu \nu} = g^{\mu \nu} - \frac{p^\mu p^\nu}{p^2}$$ \hspace{1cm} (2)

The Lagrangian density for a free electromagnetic field is

$$\mathcal{L} = -\frac{1}{4} F^{\mu \nu} F_{\mu \nu}$$ \hspace{1cm} (3)

$$= -\frac{1}{4} \left(\partial^\mu A^\nu - \partial^\nu A^\mu \right) \left(\partial_\mu A_\nu - \partial_\nu A_\mu \right)$$ \hspace{1cm} (4)

$$= -\frac{1}{4} \left(\partial^\mu A^\nu \partial_\mu A_\nu + \partial^\nu A^\mu \partial_\nu A_\mu - \partial^\nu A^\mu \partial_\mu A_\nu - \partial^\mu A^\nu \partial_\nu A_\mu \right)$$ \hspace{1cm} (5)

$$= -\frac{1}{4} \left(2 \partial^\mu A^\nu \partial_\mu A_\nu - 2 \partial^\nu A^\mu \partial_\nu A_\mu \right)$$ \hspace{1cm} (6)

$$= -\frac{1}{2} \left(\partial^\mu A^\nu \partial_\mu A_\nu - \partial^\nu A^\mu \partial_\nu A_\mu \right)$$ \hspace{1cm} (7)

To get the fourth line, we swapped $\mu \leftrightarrow \nu$ in the second and fourth terms in the third line, which is permissible since these indexes are summed.

To express \mathcal{L} in the form given by L&B’s equation 13.43, we need to use the old trick of adding in a total divergence to the Lagrangian. This is allowed since we’re assuming that the total Lagrangian is the integral of \mathcal{L} over all space and, using Gauss’s theorem, the integral of a total divergence converts to a surface integral which goes to zero at infinity. In this case, we consider the term
\[K_\mu = \frac{1}{2} A^\nu \left(\partial_\mu A_\nu - \partial_\nu A_\mu \right) \] (8)

The divergence gives us

\[\partial^\mu K_\mu = \frac{1}{2} \partial^\mu A^\nu \left(\partial_\mu A_\nu - \partial_\nu A_\mu \right) + \frac{1}{2} A^\nu \left(\partial^\mu \partial_\mu A_\nu - \partial_\nu \partial^\mu A_\mu \right) \] (9)

We now observe that the first term in (9) is the negative of \(\mathcal{L} \) as given in (7), so we can write

\[\mathcal{L} = \frac{1}{2} A^\nu \left(\partial^\mu \partial_\mu A_\nu - \partial_\nu \partial^\mu A_\mu \right) - \partial^\mu K_\mu \] (10)

and since we can throw away any total divergence that appears in the Lagrangian density, we can simplify this to

\[\mathcal{L} = \frac{1}{2} A^\nu \left(\partial^\mu \partial_\mu A_\nu - \partial_\nu \partial^\mu A_\mu \right) \] (11)

\[= \frac{1}{2} A^\nu \left(\partial^2 A_\nu - \partial_\nu \partial^\mu A_\mu \right) \] (12)

To relate this to the projection operator \(P_T \) in (2), we need to note that \(\mathcal{L} \) is given as a function of \(x \) (since all the fields \(A^\mu \) are functions of \(x \)), not \(p \), so we need to write \(P_T \) in spacetime coordinates, instead of momentum coordinates. The spacetime representation of \(p^\mu \) is \(i\partial^\mu \), so in these coordinates, we have

\[P_T^{\mu\nu} = g^{\mu\nu} - \frac{(i\partial^\mu)(i\partial^\nu)}{(i\partial)^2} \] (13)

\[= g^{\mu\nu} - \frac{\partial^\mu \partial^\nu}{\partial^2} \] (14)

The term containing the differential operators is assumed to act on whatever field is written to the right of \(P_T \).

We can now write (12) as
ELECTROMAGNETISM: LAGRANGIAN USING PROJECTION OPERATORS

\[\mathcal{L} = \frac{1}{2} A^\nu \left(\partial_\nu A_\nu - \partial_\nu \partial_\mu A^\mu \right) \] (15)

\[\begin{align*}
&= \frac{1}{2} A_\nu \partial_\nu^2 A^\nu - \frac{1}{2} A^\nu \partial_\nu \partial_\mu A^\mu \\
&= \frac{1}{2} A^\mu g_{\mu \nu} \partial_\nu^2 A^\nu - \frac{1}{2} A^\mu \partial_\mu \partial_\nu A^\nu \\
&= \frac{1}{2} A^\mu \left(g_{\mu \nu} - \frac{\partial_\mu \partial_\nu}{\partial^2} \right) \partial^2 A^\nu \\
&= \frac{1}{2} A^\mu P^T_{\mu \nu} \partial^2 A^\nu
\end{align*} \] (16) (17) (18) (19)

PINGBACKS

Pingback: [Propagator for free massive vector field]