GREEN FUNCTION FOR KLEIN-GORDON EQUATION

Link to: physicspages home page.
To leave a comment or report an error, please use the auxiliary blog.

In section 17.2, L&B derive an expression for the Feynman propagator, defined as

\[\Delta(x, y) = \left\langle 0 \left| T \phi(x) \phi^\dagger(y) \right| 0 \right\rangle \]

(1)

where \(T \) is the time ordering operator and \(\phi \) is the scalar field operator. Their derivation results in equation 17.15:

\[\Delta(x, y) = \int \frac{d^3 p}{(2\pi)^3 2E_p} \left[\theta(x^0 - y^0) e^{-ip \cdot (x-y)} + \theta(y^0 - x^0) e^{ip \cdot (x-y)} \right] \]

(2)

Here \(\theta \) is the step function. Our task is to show that \(\Delta(x, y) \) fills the role of a Green function for the Klein-Gordon equation, so that it satisfies

\[\left(\partial^2 + m^2 \right) \Delta(x, y) = -i\delta(x - y) \]

(3)

where the derivatives on the LHS are with respect to components of \(x \), not \(y \).

Our task is made slightly easier since they require that we show this in a (1+1) dimensional system (one time dimension and one space dimension). That is, we have to show

\[\left(\partial_0^2 - \partial_1^2 + m^2 \right) \Delta(x, y) = -i\delta(x^0 - y^0) \delta(x^1 - y^1) \]

(4)

To take things one step at a time, we’ll split (2) into two parts:

\[\Delta_1 = \int \frac{dp}{(2\pi)^3 2E_p} \theta(x^0 - y^0) e^{-ip \cdot (x-y)} \]

(5)

\[\Delta_2 = \int \frac{dp}{(2\pi)^3 2E_p} \theta(y^0 - x^0) e^{ip \cdot (x-y)} \]

(6)

In what follows, we need the derivative of the step function.
\[\partial_0 \theta (x^0 - y^0) \equiv \frac{\partial}{\partial x^0} \theta (x^0 - y^0) = \delta (x^0 - y^0) \tag{7} \]
\[\frac{\partial}{\partial x^0} \theta (y^0 - x^0) = -\delta (y^0 - x^0) = -\delta (x^0 - y^0) \tag{8} \]

We also need the derivative of the delta function which satisfies the condition for any function \(f \):
\[f (x) \delta' (x) = -f' (x) \delta (x) \tag{9} \]

For \(\Delta_1 \), we have
\[\partial_0 \Delta_1 (x, y) = \int \frac{dp}{(2\pi)^2 E_p} \left[\delta (x^0 - y^0) e^{-ip (x-\cdot)} - i E_p \theta (x^0 - y^0) e^{-ip (x-y)} \right] \tag{10} \]
\[\partial_0^2 \Delta_1 (x, y) = \int \frac{dp}{(2\pi)^2 E_p} \left[\delta' (x^0 - y^0) e^{-ip (x-\cdot)} - i E_p \delta (x^0 - y^0) e^{-ip (x-y)} \right. \]
\[\left. -i E_p \delta (x^0 - y^0) e^{-ip (x-\cdot)} - E^2_p \theta (x^0 - y^0) e^{-ip (x-y)} \right] \tag{11} \]

Using \(\delta' (x^0 - y^0) e^{-ip (x-\cdot)} = i E_p \delta (x^0 - y^0) e^{-ip (x-y)} \) \(\tag{12} \)

Thus the first two terms in the brackets cancel and we’re left with
\[\partial_0^2 \Delta_1 (x, y) = - \int \frac{dp}{(2\pi)^2 E_p} \left[i E_p \delta (x^0 - y^0) e^{-ip (x-\cdot)} + E^2_p \theta (x^0 - y^0) e^{-ip (x-y)} \right] \tag{13} \]

We can do the same calculation on \(\Delta_2 \) and use \(\delta' (x^0 - y^0) e^{-ip (x-\cdot)} = i E_p \delta (x^0 - y^0) e^{-ip (x-y)} \) \(\tag{8} \)

The spatial derivatives are
\[\partial_1^2 \Delta_1 (x, y) = - \int \frac{dp}{(2\pi)^2 E_p} \theta (x^0 - y^0) (p^1)^2 e^{-ip (x-y)} \tag{15} \]
\[\partial_1^2 \Delta_2 (x, y) = - \int \frac{dp}{(2\pi)^2 E_p} \theta (y^0 - x^0) (p^1)^2 e^{ip (x-y)} \tag{16} \]

Finally, the \(m^2 \) terms are
\[m^2 \Delta_1 (x, y) = \int \frac{dp}{(2\pi)^2} \frac{m^2 \theta (x^0 - y^0)}{2E_p} e^{-ip \cdot (x - y)} \]

(17)

\[m^2 \Delta_2 (x, y) = \int \frac{dp}{(2\pi)^2} \frac{m^2 \theta (y^0 - x^0)}{2E_p} e^{ip \cdot (x - y)} \]

(18)

We can now use

\[E^2_{pp} = (p^1)^2 + m^2 \]

(19)

to combine the last term in (15) with (18) and (17) as specified on the LHS of (4):

\[
\int \frac{dp}{(2\pi)^2} \frac{E^2_{pp} - (p^1)^2 + m^2}{2E_p} \theta (x^0 - y^0) e^{-ip \cdot (x - y)} = 0
\]

(20)

We get a similar result with the components from \(\Delta_2 \):

\[
\int \frac{dp}{(2\pi)^2} \frac{E^2_{pp} - (p^1)^2 + m^2}{2E_p} \theta (y^0 - x^0) e^{ip \cdot (x - y)} = 0
\]

(21)

We’re therefore left with

\[
(\partial^2_0 - \partial^2_1 + m^2) \Delta (x, y) = - \int \frac{dp}{(2\pi)^2} \frac{E_p \delta (x^0 - y^0)}{2E_p} \left(e^{-ip \cdot (x - y)} + e^{ip \cdot (x - y)} \right)
\]

(22)

\[
= -i \delta (x^0 - y^0) \int \frac{dp^1}{2\pi} e^{-ip^1 \cdot (x^1 - y^1)}
\]

(23)

\[
= -i \delta (x^0 - y^0) \delta (x^1 - y^1)
\]

(24)

We’ve converted the exponent \(p \cdot (x - y) \) to just \(p^1 (x^1 - y^1) \) since the delta function \(\delta (x^0 - y^0) \) restricts \(x^0 = y^0 \). We’ve also used the standard definition of the delta function (in one dimension) as

\[
\delta (x^0 - y^0) = \frac{1}{2\pi} \int dp^1 e^{-ip^1 \cdot (x^1 - y^1)} = \frac{1}{2\pi} \int dp^1 e^{ip^1 \cdot (x^1 - y^1)}
\]

(25)

Note that it doesn’t matter which sign we choose in the exponent since we’re integrating over all \(p^1 \).