GREEN FUNCTION FOR DIFFUSION EQUATION

The diffusion or heat equation is

\[\frac{\partial n(x,t)}{\partial t} - D \nabla^2 n(x,t) = 0 \]

(1)

where \(n(x,t) \) is the density of molecules (for diffusion) or temperature (for heat) at spatial location \(x \) at time \(t \), and \(D \) is the coefficient of diffusion. In the general case, \(D \) could depend on \(x \) and \(t \), but we’ll take it to be a constant here. The diffusion equation can be augmented by adding a forcing term in place of the 0 on the RHS, but again, we’ll omit that here.

The Green function \(G(x-y,t-u) \) for this equation is defined by the equation

\[\frac{\partial G}{\partial t} - D \nabla^2 G = \delta^{(3)}(x-y) \delta(t-u) \]

(2)

We are given an initial condition

\[G(x-y,t=0) = \delta^{(3)}(x-y) \]

(3)

which corresponds to a point source at position \(y \) at \(t = 0 \).

We can get the energy-momentum Green function by using a Fourier transform of \(G \):

\[G(x-y,t-u) = \frac{1}{(2\pi)^4} \int d^3 q \, d \omega e^{-iq \cdot (x-y)} e^{-i\omega t} G(\omega,q) \]

(4)

Plugging this into the LHS of (2) we have

\[\frac{\partial G}{\partial t} - D \nabla^2 G = \frac{1}{(2\pi)^4} \int d^3 q \, d \omega \left(-i\omega + Dq^2 \right) e^{-iq \cdot (x-y)} e^{-i\omega t} G(\omega,q) \]

(5)

In order for this to equal the RHS of (2), we therefore have

\[G(\omega,q) = \frac{1}{-i\omega + Dq^2} \]

(6)
I’m not sure I understand the point of the exercise as stated in L&B’s book, since they ask us to derive [6] while taking into account the initial condition, but we haven’t used the initial condition [3]. As I don’t have access to the book by Chaikin and Lubensky that they refer to in the question, I’ll settle for deriving the Green function \(G(x-y,t) \) (with \(u = 0 \)) that satisfies [3].

To do this, we’ll use a Fourier transform of \(G(x-y,t) \) in space only, leaving the time coordinate untouched. That is, we consider

\[
G(x-y,t) = \frac{1}{(2\pi)^3} \int d^3q \ e^{iq \cdot (x-y)} G(q,t)
\]

Plugging this into the LHS of [2] we have

\[
\frac{\partial G}{\partial t} - D\nabla^2 G = \frac{1}{(2\pi)^3} \int d^3q \ e^{iq \cdot (x-y)} \left(\dot{G}(q,t) + Dq^2 G(q,t) \right)
\]

In order for this to match the RHS of [2] with \(u = 0 \) we therefore must have

\[
\dot{G}(q,t) + Dq^2 G(q,t) = \delta(t)
\]

We can solve this differential equation by using an integrating factor. That is, we multiply both sides by \(e^{Dq^2 t} \) and then observe that

\[
\frac{\partial}{\partial t} \left(e^{Dq^2 t} G(q,t) \right) = e^{Dq^2 t} \left(\dot{G}(q,t) + Dq^2 G(q,t) \right)
\]

Therefore

\[
\frac{\partial}{\partial t} \left(e^{Dq^2 t} G(q,t) \right) = e^{Dq^2 t} \delta(t)
\]

We can now integrate both sides to get

\[
e^{Dq^2 t} G(q,t) = \int dt \ e^{Dq^2 t} \delta(t)
\]

The RHS is zero if the range of integration doesn’t include \(t = 0 \) (because of the delta function) and 1 otherwise (since \(e^{Dq^2 t} = 1 \) when \(t = 0 \)). Therefore, assuming we start the integration at \(t = 0 \), we have, for \(t > 0 \)

\[
G(q,t) = e^{-Dq^2 t}
\]

The Green function \(G(x-y,t) \) can now be found by taking the inverse Fourier transform (I did the integral using Maple. Doing it by hand is possible, though a bit messy):
GREEN FUNCTION FOR DIFFUSION EQUATION

\begin{equation}
G(x - y, t) = \int d^3q \ e^{-iq(x-y)} e^{-Dq^2t}
\end{equation}

\begin{equation}
= \int_0^{2\pi} d\phi \int_0^{\pi} d\theta \int_0^{\infty} dq \ q^2 \sin \theta e^{-iq(x-y)\cos \theta} e^{-Dq^2t}
\end{equation}

\begin{equation}
= \frac{\pi^{3/2}}{(Dt)^{3/2}} e^{-(x-y)^2/4Dt}
\end{equation}

If \(x = y \) then this function goes to \(\infty \) as \(t \to 0 \). If \(x \neq y \), then the exponent goes to \(-\infty \) as \(t \to 0 \), so the overall function goes to zero, since the exponential \(e^{-(x-y)^2/4Dt} \) goes to zero faster than the denominator \(t^{3/2} \). Thus \(G(x - y, t) \) behaves like \(\delta^{(3)}(x - y) \delta(t) \).

We can check the normalization by doing the integral. For the purposes of the integral, we define a new spatial variable \(r \equiv x - y \), so we have (again, using Maple to do the integral):

\begin{equation}
\int d^3r \ G(x - y, t) = \frac{\pi^{3/2}}{(Dt)^{3/2}} \int d^3r \ e^{-r^2/4Dt}
\end{equation}

\begin{equation}
= (2\pi)^2
\end{equation}

In order for \(G(x - y, t) \) to be exactly a delta function, the normalization should be 1. However, I can’t see where the missing factor of \((2\pi)^2\) is - comments welcome.