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The generating functional for ¢* theory is
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where the exponential is an expansion of the operator that forms the expo-
nent, and the derivatives within this exponent are functional derivatives, and
2y [J] is the normalized generating functional for the free scalar field:
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The first term (apart from the trivial zeroth order term, which is 1) in the
expansion of [I]is
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To calculate the first-order functional derivative, we use the original defini-
tion of a functional derivative

OF[f] _ . Flf()+eb(z—xo)]—FI[f(2)]
df (xo) :lgr(l) € @

In our case, the functional F' is Zj[.J] and the function f with respect to
which we’re taking the functional derivative is .J. The first functional deriv-
ative is therefore
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Since ¢ is infinitesimal, we need worry only about terms up to first order in
€, so we can write the first exponential as
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We can do the integrals over the delta functions in the last two lines to
give, for these last two lines:
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This exponential can be expanded up to first order to give
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Since the propagator A(z —y) is symmetric (A(z—y) = A(y—x) - see
L&B’s equation 17.24 and do the substitution p — —p in the integral), and

the x in the first integral and the y in the second integral are just dummy
integration variables, we have

[1——/d4x J(z —z)e—%/d“yeA(z—y)J(y)]z (11)
Zy[J] [I—E/d“yA(z—y)J(y)]

Plugging this back into [5| we have
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To calculate the next derivative, we use the product rule, but then we need
the derivative of the first factor in [I2] Applying the same recipe [] to this
term gives
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Therefore, the derivative of [12]is
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The next two derivatives are straighforward, as they don’t involve the func-
tional derivative of anything that we haven’t already calculated. I'll use the
shorthand notation

v=[dyac-y»Iw (19)
In this notation
020 [J]
57 (2) =Y Zy[J] (20)
822y [J] a2
57 (=) = (-A(z—2)+Y?) Zy[J] (21)
oY
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Applying the product and chain rules to [21{ we have
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Finally, the fourth derivative can be found by differentiating
*2[J] _ . CAV2A (s 3
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The last line expands to L&B’s equation 24.39 when we substitute for Y.
To get the final formula for Z; [J] from | we multiply ZO[‘]]

572" by — and
integrate over z. The only catch is that when we expand the powers of Y,

we must use a different integration variable for each integral in the product.
That is, for example

_ (/d4yA(z—y)J(y)>2 (30)
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and similarly for Y. The final result is that given in L&B’s equation 24.40,
which is long, but follows directly from the above:
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FIGURE 1. Feynman diagrams for Z; [J]
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This is the sum of 3 terms, of order 0, 2 and 4 in J. If we interpret A as the
Feynman propagator and each J as a vertex in the Feynman diagram, the
diagrams for these three terms are as in Fig. The propagator A(z — z)
starts and ends at the same spacetime point, so is represented by a loop as
in Fig. [I(a). The second term contains one of these loops and also two
lines from the interaction point z to the endpoints y; and ¥, as in Fig. [T[b).
Finally, the fourth order term has no loops and four branches, all meeting at
a common point z, which is as a result of the ¢4 interaction term (as in Fig.

[Tkc)).



