SYMMETRY BREAKING IN A GAUGE THEORY

We consider the Lagrangian

\[\mathcal{L} = -\frac{1}{4} F_{\mu\nu} F^{\mu\nu} + |D_\mu \psi|^2 - V(\psi) \]

(1)

where \(F_{\mu\nu} \) is the electromagnetic field tensor, \(D_\mu \) is a covariant derivative defined by

\[D_\mu = \partial_\mu + iqA_\mu \]

(2)

with \(A_\mu \) being the electromagnetic four-potential, and the potential term is given in terms of a complex scalar field \(\psi \) as

\[V(\psi) = -m^2 \psi^\dagger \psi + \frac{\lambda}{2} (\psi^\dagger \psi)^2 \]

(3)

Note that the Lagrangian is invariant under the symmetry transformation

\[\psi \rightarrow \psi e^{i\alpha(x)} \]

(4)

where \(\alpha(x) \) is an arbitrary real function of spacetime \(x \). This is shown in L&B’s Chapter 14, particularly Example 14.3 (although beware this example has a few typos in it).

If we take the quantity \(\psi^\dagger \psi \) to be a single variable called \(a \equiv \psi^\dagger \psi \), we can calculate the minimum of \(V \) by taking the derivative.

\[\frac{\partial V(a)}{\partial a} = -m^2 + \lambda a = 0 \]

(5)

which gives us

\[a_0 = \frac{m^2}{\lambda} \]

(6)

Thus the potential has a minimum whenever

\[\psi = \sqrt{\frac{m^2}{\lambda}} e^{i\alpha} \]

(7)
We can break the symmetry by choosing a particular value of ψ, which we’ll call ψ_0. The simplest choice is

$$\psi_0 = \sqrt{\frac{m^2}{\lambda}} \quad (8)$$

Since ψ is a complex function of x, we can represent ψ near this minimum by the expression

$$\psi = \psi_0 + \frac{1}{\sqrt{2}} \left(\phi_1(x) + i\phi_2(x) \right) \quad (9)$$

$$\psi^\dagger = \psi_0 + \frac{1}{\sqrt{2}} \left(\phi_1(x) - i\phi_2(x) \right) \quad (10)$$

where ϕ_1 and ϕ_2 are taken to be small real functions.

The potential in this broken symmetry theory can then be found by plugging (9) into (3) and multiplying out the terms. We get

$$\psi^\dagger \psi = \psi_0^2 + \frac{1}{\sqrt{2}} \psi_0 \phi_1 + \frac{1}{2} \left(\phi_1^2 + \phi_2^2 \right) \quad (11)$$

$$= \frac{m^2}{\lambda} + \sqrt{\frac{m^2}{\lambda}} \phi_1 + \frac{1}{2} \left(\phi_1^2 + \phi_2^2 \right) \quad (12)$$

$$\left(\psi^\dagger \psi \right)^2 = \psi_0^4 + 2\sqrt{2} \psi_0^3 \phi_1 + 2\psi_0^2 \phi_1^2 + \psi_0^2 \left(\phi_1^2 + \phi_2^2 \right) + O \left(\phi_3^3 \right) \quad (13)$$

$$= \frac{m^4}{\lambda^2} + 2 \frac{m^2}{\lambda} \sqrt{2 \frac{m^2}{\lambda}} \phi_1 + 2 \frac{m^2}{\lambda} \phi_1^2 + \frac{m^2}{\lambda} \left(\phi_1^2 + \phi_2^2 \right) + O \left(\phi_3^3 \right) \quad (14)$$

If we call this potential $U(x)$, we have

$$U(x) = -m^2 \psi^\dagger \psi + \frac{\lambda}{2} \left(\psi^\dagger \psi \right)^2 = -\frac{m^4}{\lambda} - m^2 \sqrt{\frac{2m^2}{\lambda}} \phi_1 - \frac{m^2}{2} \left(\phi_1^2 + \phi_2^2 \right) +$$

$$\frac{m^4}{2\lambda} + \frac{m^2}{\lambda} \sqrt{\frac{2m^2}{\lambda}} \phi_1 + m^2 \phi_1^2 + \frac{m^2}{2} \left(\phi_1^2 + \phi_2^2 \right) + O \left(\phi_3^3 \right) \quad (15)$$

$$= -\frac{m^4}{2\lambda} + m^2 \phi_1^2 + O \left(\phi_3^3 \right) \quad (16)$$

The kinetic energy term becomes

$$|D_\mu \psi|^2 = (\partial_\mu \psi + iqA_\mu \psi) \left(\partial^\mu \psi^\dagger - iqA^\mu \psi^\dagger \right) \quad (17)$$
We can now insert ψ_0 and multiply out the result. Remember that ψ_0 is a constant, so its derivative is zero.

$$|D_\mu \psi|^2 = \left[\frac{1}{\sqrt{2}} (\partial_\mu \phi_1 + i \partial_\mu \phi_2) + iqA_\mu \left(\psi_0 + \frac{1}{\sqrt{2}} (\phi_1 + i \phi_2) \right) \right] \times \left[\frac{1}{\sqrt{2}} (\partial^\mu \phi_1 - i \partial^\mu \phi_2) - iqA^\mu \left(\psi_0 + \frac{1}{\sqrt{2}} (\phi_1 - i \phi_2) \right) \right]$$

(18)

$$= \frac{1}{2} (\partial_\mu \phi_1)^2 + \frac{1}{2} (\partial_\mu \phi_2)^2 + \frac{1}{\sqrt{2}} \partial_\mu \phi_1 (-iqA^\mu \psi_0) + iqA_\mu \psi_0 \frac{1}{\sqrt{2}} \partial^\mu \phi_1 + \frac{i}{\sqrt{2}} \partial_\mu \phi_2 (-iqA^\mu \psi_0) + \frac{i}{\sqrt{2}} qA_\mu \psi_0 (-i \partial^\mu \phi_2) + q^2 A^\mu A_\mu \psi_0^2 + \ldots$$

(19)

$$= \frac{1}{2} (\partial_\mu \phi_1)^2 + \frac{1}{2} (\partial_\mu \phi_2)^2 + \sqrt{2} q \psi_0 A_\mu \partial^\mu \phi_2 + q^2 \psi_0^2 A^\mu A_\mu + \ldots$$

(20)

$$= \frac{1}{2} (\partial_\mu \phi_1)^2 + \frac{1}{2} (\partial_\mu \phi_2)^2 + q \sqrt{\frac{2m^2}{\lambda}} A_\mu \partial^\mu \phi_2 + \frac{q^2}{\lambda} m^2 A^\mu A_\mu + \ldots$$

(21)

The term $\frac{q^2}{\lambda} m^2 A^\mu A_\mu$ resembles a term with a mass governed by the field A^μ which is the electromagnetic field, so I suppose this term could be interpreted as a massive photon.