COHERENT STATES OF THE HARMONIC OSCILLATOR:
UNCERTAINTY RELATIONS

Link to: physicspages home page.
To leave a comment or report an error, please use the auxiliary blog.
Reference: Tom Lancaster and Stephen J. Blundell, Quantum Field Theory for the Gifted Amateur, (Oxford University Press, 2014), Problems 27.2 - 27.3.
Post date: 5 Oct 2019

The coherent states of the harmonic oscillator are eigenvalues of the annihilation operator, so that

\[a |\alpha\rangle = \alpha |\alpha\rangle \]

(1)

The reduced position and momentum operators introduced by L&B are:

\[Q = \frac{1}{\sqrt{2}} (a + a^\dagger) \]

(2)

\[P = -i \frac{1}{\sqrt{2}} (a - a^\dagger) \]

(3)

The expectation values of \(Q \) in a coherent state is then

\[\langle Q \rangle = \langle \alpha | Q |\alpha\rangle \]

(4)

\[= \frac{1}{\sqrt{2}} \left(\langle \alpha | a |\alpha\rangle + \langle \alpha | a^\dagger |\alpha\rangle \right) \]

(5)

\[= \frac{1}{\sqrt{2}} (\alpha + \alpha^*) \]

(6)

\[= \frac{1}{\sqrt{2}} 2\Re \alpha \]

(7)

\[= \sqrt{2} \Re \alpha \]

(8)

Similarly, for \(P \) we have
\[\langle P \rangle = -\frac{i}{\sqrt{2}} (\alpha - \alpha^*)\]
\[(9)\]
\[= -\frac{i}{\sqrt{2}} (2i \Im \alpha)\]
\[(10)\]
\[= \sqrt{2} \Im \alpha\]
\[(11)\]

Combining these two results, we have

\[\alpha = \frac{1}{\sqrt{2}} (\langle Q \rangle + i \langle P \rangle)\]
\[(12)\]

From \[2\], we have, using the commutation relation

\[\left[a, a^\dagger \right] = 1\]
\[(13)\]

the following results:

\[Q^2 = \frac{1}{2} \left(aa + a^\dagger a^\dagger + aa^\dagger + a^\dagger a \right)\]
\[(14)\]
\[= \frac{1}{2} \left(aa + a^\dagger a^\dagger + 2a^\dagger a + 1 \right)\]
\[(15)\]
\[\langle Q^2 \rangle = \langle \alpha | Q^2 | \alpha \rangle\]
\[(16)\]
\[= \frac{1}{2} \left(\alpha^2 + \alpha^* \right)\]
\[(17)\]
\[= \frac{1}{2} \left((\alpha + \alpha^*)^2 + 1 \right)\]
\[(18)\]
\[= \frac{1}{2} + 2 (\Re \alpha)^2\]
\[(19)\]

Similarly, for \(P^2\):
\[P^2 = -\frac{1}{2} \left(a a^\dagger a^\dagger - a a^\dagger - a^\dagger a \right) \]
\[= -\frac{1}{2} \left(a a^\dagger a^\dagger - 2 a^\dagger a - 1 \right) \]
\[\langle P^2 \rangle = \langle \alpha | P^2 | \alpha \rangle \]
\[= -\frac{1}{2} \left(\alpha^2 + \alpha^* 2 - 2 \alpha \alpha^* - 1 \right) \]
\[= -\frac{1}{2} \left((\alpha - \alpha^*)^2 - 1 \right) \]
\[= \frac{1}{2} + 2 (\Im \alpha)^2 \]

The standard deviations are then

\[\Delta Q = \sqrt{\langle Q^2 \rangle - \langle Q \rangle^2} \]
\[= \sqrt{\frac{1}{2} + 2 (\Re \alpha)^2 - \left(\sqrt{2} \Re \alpha \right)^2} \]
\[= \frac{1}{\sqrt{2}} \]

\[\Delta P = \sqrt{\langle P^2 \rangle - \langle P \rangle^2} \]
\[= \sqrt{\frac{1}{2} + 2 (\Im \alpha)^2 - \left(\sqrt{2} \Im \alpha \right)^2} \]
\[= \frac{1}{\sqrt{2}} \]

The uncertainty relation is therefore

\[(\Delta P)^2 (\Delta Q)^2 = \frac{1}{2} \times \frac{1}{2} = \frac{1}{4} \]

which is the minimum uncertainty allowed by the uncertainty principle.

Pingbacks

Pingback: Coherent states: position and momentum wave functions
Pingback: Coherent states: balanced uncertainty
Pingback: Coherent states: Dirac’s phase operator