SECOND QUANTIZING OPERATORS - EXAMPLES

We’ve seen that we can second quantize a single-particle operator \(\hat{A} \) using creation and annihilation operators to get the multi-particle version:

\[
\hat{A} = \sum_{\alpha,\beta} A_{\alpha\beta} a^\dagger_{\alpha} a_{\beta}
\]

Using this result, we can get second quantized versions of some common operators. The unit operator is

\[
\hat{1} = \sum_{\gamma} |\gamma\rangle \langle \gamma|
\]

so

\[
\langle \alpha | \hat{1} | \beta \rangle = \langle \alpha | \sum_{\gamma} |\gamma\rangle \langle \gamma| \beta \rangle
\]

\[
= \sum_{\gamma} \delta_{\alpha\gamma} \delta_{\gamma\beta}
\]

\[
= \delta_{\alpha\beta}
\]

so the multi-particle version is

\[
\hat{n} = \sum_{\alpha} a^\dagger_{\alpha} a_{\alpha}
\]

Since \(a^\dagger_{\alpha} a_{\alpha} \) is the number operator, it counts the number of particles in state \(\alpha \) so \(\hat{n} \) gives the total number of particles in the multi-particle state. [I’m still not clear as to whether this result is supposed to apply to states where there are more than one particle in a given momentum state. The derivation of \(\hat{n} \) appears to assume that each particle is in a different single-particle state, so it seems safer to assume that \(a^\dagger_{\alpha} a_{\alpha} \) can return only 0 or 1.]
For the momentum operator (we’re still looking at the particle in a box, so momentum states are still discrete) we have

\[\hat{p} |p\rangle = p |p\rangle \]
\[\langle q | \hat{p} | p \rangle = p \langle q | p \rangle \]
\[= p \delta_{qp} \]

The multi-particle version is therefore

\[\hat{p} = \sum_{q,p} p \delta_{qp} a_q^\dagger a_p \]
\[= \sum_{p} p a_p^\dagger a_p \]

We can extend this result to functions of momentum \(f(p) \). First, we look at powers of the momentum operator, where we can use induction to prove that \((\hat{p})^n |p\rangle = p^n |p\rangle \). We know this is true for \(n = 1 \) so assume it’s true for \(n - 1 \). Then

\[(\hat{p})^n |p\rangle = \hat{p} (\hat{p})^{n-1} |p\rangle \]
\[= p^{n-1} \hat{p} |p\rangle \]
\[= p^n |p\rangle \]

QED. That is, \(|p\rangle \) is an eigenvector of \((\hat{p})^n\) with eigenvalue \(p^n \).

Now if the function \(f(\hat{p}) \) can be expanded in powers of \(\hat{p} \) then

\[f(\hat{p}) = f_0 + f_1 \hat{p} + f_2 (\hat{p})^2 + \ldots \]

where the \(f_i \) are constants. Now \(|p\rangle \) is an eigenvector of the term \(f_i (\hat{p})^i \) in the series with eigenvalue \(p^i \). In other words, we’re replacing a series in the operator \(\hat{p} \) with an identical series in its eigenvalue, so

\[f(\hat{p}) |p\rangle = f(\hat{p}) |p\rangle \]
\[\langle q | f(\hat{p}) | p \rangle = f(\hat{p}) \langle q | p \rangle \]
\[= f(\hat{p}) \delta_{qp} \]

Therefore the second-quantized version of \(f(\hat{p}) \) is
\[\hat{A} = \sum_p f(p) a_p^\dagger a_p \]
\[= \sum_p f(p) \hat{n}_p \]
\[(19) \]

The interpretation is that the operator \(f \) acts separately on each particle with the total result being the sum of its values for all particles.

For example, the hamiltonian for a single free particle is \(\hat{H} = \hat{p}^2 / 2m \) so the hamiltonian for a collection of free particles is

\[\hat{H} = \sum_p \frac{\hat{p}_p^2}{2m} \hat{n}_p \]
\[(20) \]

The potential energy is usually given as a function of position, so using the momentum eigenfunction \(|p\rangle = \frac{1}{\sqrt{V}} e^{-i\hat{p} \cdot \hat{x}} \) (where \(V \) is the volume of the box) we have from (19)

\[\langle q | \hat{V} | p \rangle = \frac{1}{V} \int d^3x e^{i\hat{q} \cdot \hat{x}} V(x) e^{-i\hat{p} \cdot \hat{x}} \]
\[= \frac{1}{V} \int d^3x e^{-i(\hat{p} - \hat{q}) \cdot \hat{x}} V(x) \]
\[= \hat{V}_{p-q} \]
\[(22) \]

The potential can then be second quantized as

\[\hat{V} = \sum_{p,q} \hat{V}_{p-q} a_p^\dagger a_q \]
\[(23) \]

Example. Suppose we have a 3 state system with a hamiltonian

\[\hat{H} = E_0 \sum_{i=1}^3 a_i^\dagger a_i + W \left[a_1^\dagger a_2 - a_1^\dagger a_3 + a_2^\dagger a_1 + a_2^\dagger a_3 - a_3^\dagger a_1 + a_3^\dagger a_2 \right] \]
\[= T + V \]
\[(24) \]

where \(T \) is the kinetic energy (the first term) and \(V \) is the potential energy (the second term). \(T \) is diagonal but \(V \) is not; we can see the effect of \(V \) on the basis states \(|100\rangle, |010\rangle \) and \(|001\rangle \) by observing that \(a_1^\dagger a_2 |010\rangle = |100\rangle \) (annihilate state 2 and create state 1), \(a_1^\dagger a_2 |001\rangle = 0 \) (no particle in state 2 so annihilation of state 2 produces 0) and so on.
\[V |100 \rangle = W (|010 \rangle - |001 \rangle) \] (28)
\[V |010 \rangle = W (|100 \rangle + |001 \rangle) \] (29)
\[V |001 \rangle = W (-|100 \rangle + |010 \rangle) \] (30)

We can write the Hamiltonian as a matrix

\[\hat{H} = T + V \] (31)

\[= E_0 \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} + W \begin{bmatrix} 0 & 1 & -1 \\ 1 & 0 & 1 \\ -1 & 1 & 0 \end{bmatrix} \] (32)

In this form, for example, 28 would be written as

\[V |100 \rangle = W \begin{bmatrix} 0 & 1 & -1 \\ 1 & 0 & 1 \\ -1 & 1 & 0 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} = W \begin{bmatrix} 0 \\ 1 \\ -1 \end{bmatrix} \] (33)

Finding the energies and eigenstates of this Hamiltonian means we need to find the eigenvalues and eigenvectors of \(\hat{H} \), which turn out to be

\[E = E_0 + W, \ E_0 + W, \ E_0 - 2W \] (34)

The ground state \(|\Omega\rangle\) (assuming \(W > 0\)) has energy \(E_0 - 2W\) and its eigenvector is

\[|\Omega\rangle = \frac{1}{\sqrt{3}} (|100\rangle - |010\rangle + |001\rangle) \] (35)

The other energy level \(E_0 + W\) is doubly degenerate and its 2-d space of eigenvectors is spanned by

\[\frac{1}{\sqrt{2}} (-|100\rangle + |001\rangle), \ \frac{1}{\sqrt{2}} (|100\rangle + |010\rangle) \] (36)