METRIC TENSOR UNDER LORENTZ TRANSFORMATION

Link to: physicspages home page.
To leave a comment or report an error, please use the auxiliary blog.
Post date: 14 Mar 2013.
The invariant interval in special relativity can be written as

$$ds^2 = \eta_{ij} dx^i dx^j$$ \hspace{1cm} (1)

where η_{ij} is the metric tensor in flat space, with components $\eta_{00} = -1$, $\eta_{ii} = +1$ for $i = 1, 2, 3$ and zero otherwise. Thus this relation is the same as

$$ds^2 = -dt^2 + dx^2 + dy^2 + dz^2$$ \hspace{1cm} (2)

Under a Lorentz transformation, we get

$$ds^2 = \eta_{ij} dx'^i dx'^j$$ \hspace{1cm} (3)

$$= \eta_{ij} \Lambda^i_a \Lambda^j_b dx^a dx^b$$ \hspace{1cm} (4)

Since the interval is invariant, we get

$$\eta_{ij} \Lambda^i_a \Lambda^j_b dx^a dx^b = \eta_{ab} dx^a dx^b$$ \hspace{1cm} (5)

$$\left(\eta_{ij} \Lambda^i_a \Lambda^j_b - \eta_{ab} \right) dx^a dx^b = 0$$ \hspace{1cm} (6)

Since the last equation must be true for an infinitesimal interval, the quantity in parentheses must be zero, so

$$\eta_{ab} = \eta_{ij} \Lambda^i_a \Lambda^j_b$$ \hspace{1cm} (7)

That is, if we apply a Lorentz transformation (the same transformation!) to each index in the metric tensor, we get the same tensor back again.

We can multiply this equation by an inverse transformation to get

$$\left(\Lambda^{-1} \right)_k^a \eta_{ab} = \eta_{ij} \Lambda^i_a \Lambda^j_b \left(\Lambda^{-1} \right)_k^a$$ \hspace{1cm} (8)

Multiplying a transformation by its inverse gives the identity matrix:

$$\Lambda^i_a \left(\Lambda^{-1} \right)_k^a = \delta^i_k$$ \hspace{1cm} (9)
So we get

\[(\Lambda^{-1})^a_k \eta_{ab} = \eta_{ij} \delta^i_k \Lambda^j_b \quad (10)\]
\[= \eta_{kj} \Lambda^j_b \quad (11)\]

Repeating the process, we get

\[\left(\Lambda^{-1}\right)^b_l \left(\Lambda^{-1}\right)^a_k \eta_{ab} = \eta_{kj} \Lambda^j_b \left(\Lambda^{-1}\right)^b_l \quad (12)\]
\[= \eta_{kj} \delta^j_l \quad (13)\]
\[= \eta_{kl} \quad (14)\]

Thus, not surprisingly, if we multiply the metric tensor by two inverse Lorentz transformations, we get the same tensor back.

PINGBACKS

Pingback: Klein-Gordon equation
Pingback: Parity and time reversal as Lorentz transformations