ELECTROMAGNETIC FIELD TENSOR: CONSERVATION OF MASS

Link to: physicspages home page.
To leave a comment or report an error, please use the auxiliary blog.
Post date: 15 Mar 2013.

As we’ll study in more detail a bit later, the electric and magnetic fields can be combined into a single tensor known as the electromagnetic field tensor \(F^{ij} \):

\[
F^{ij} = \begin{bmatrix}
0 & E_x & E_y & E_z \\
-E_x & 0 & B_z & -B_y \\
-E_y & -B_z & 0 & B_x \\
-E_z & B_y & -B_x & 0
\end{bmatrix}
\] (1)

We can see from its definition that this tensor is anti-symmetric, that is, that \(F^{ij} = -F^{ji} \). For any anti-symmetric tensor we can show that

\[
F^{ij} \eta_{ia} \eta_{jb} u^a u^b = 0
\] (2)

In this equation, \(\eta_{ij} \) is the metric tensor in flat space and \(u^a \) is the four-velocity, but in fact the formula is valid for any tensors \(\eta \) and \(u \), provided that \(F \) is anti-symmetric. The proof involves a bit of index-switching.

\[
F^{ij} \eta_{ia} \eta_{jb} u^a u^b = -F^{ji} \eta_{ia} \eta_{jb} u^a u^b
\] (3)

\[
= -F^{ij} \eta_{ja} \eta_{ib} u^a u^b
\] (4)

\[
= -F^{ij} \eta_{jb} \eta_{ia} u^b u^a
\] (5)

In the second line, we swapped the dummy indexes \(i \) and \(j \), and in the third line we swapped \(a \) and \(b \). The result shows that the original quantity is equal to its negative, which means it must be zero.

In terms of \(F^{ij} \), the electric and magnetic (Lorentz) force laws for a charge \(q \) can be combined into a single equation:

\[
\frac{dp^i}{d\tau} = qF^{ij} \eta_{ia} u^a
\] (6)

where \(u^a = \gamma [1, v_x, v_y, v_z] \) is the four-velocity.
ELECTROMAGNETIC FIELD TENSOR: CONSERVATION OF MASS

For example, if \(i = 1 \) we get

\[
\frac{dp^1}{d\tau} = q\gamma (E_x + v_y B_z - v_z B_y)
\]

(7)

In the non-relativistic limit, \(\gamma \to 1 \) and this is the \(x \) component of the force law \(\frac{dp}{dt} = qE + qv \times B \). We’ll explore some of the other properties of this tensor later.

Since the square of the four-momentum of a particle is the negative of its mass squared \((p \cdot p = \gamma^2 m^2 (-1 + v^2) = -m^2) \), this should be conserved for a charged particle moving in an electromagnetic field. (Its total momentum is, of course, not conserved since the fields exert a force on the particle.)

We have

\[
\frac{d(p \cdot p)}{d\tau} = \frac{d}{d\tau} \left(\eta_{ij} p^i p^j \right)
= \eta_{ij} \left[\frac{dp^i}{d\tau} p^j + p^i \frac{dp^j}{d\tau} \right]
= 2\eta_{ij} \frac{dp^i}{d\tau} p^j
= 2q\eta_{ij} F^{ik} \eta_{ka} u^a p^j
= 2qm F^{ik} \eta_{ij} \eta_{ka} u^a u^j
= 0
\]

(8)

(9)

(10)

(11)

(12)

(13)

In the third line, we used the fact that \(\eta_{ij} = \eta_{ji} \) and swapped \(i \) and \(j \) in the second term. The fourth line uses \(6 \) and the last line uses \(2 \).

PINGBACKS

Pingback: Electromagnetic field tensor: change in kinetic energy
Pingback: Electromagnetic field tensor: contractions with metric tensor
Pingback: Electromagnetic field tensor: invariance under Lorentz transformations
Pingback: Tensor indices: Newton’s law
Pingback: Electromagnetic field tensor: a couple of Maxwell’s equations
Pingback: Electromagnetic field tensor: justification
Pingback: Maxwell’s equations using the electromagnetic field tensor
Pingback: Maxwell’s equations from the electromagnetic field tensor