Black Hole Entropy: It’s Pretty Large

Link to: physicspages home page.
To leave a comment or report an error, please use the auxiliary blog.
Post date: 20 Dec 2013.
The entropy of a solar mass black hole is given by

\[S = \frac{4\pi k_B G}{\hbar} M_s^2 \]

(1)

How does this compare with the entropy of objects at ‘normal’ density and room temperature? In the latter case, the entropy is usually around \(S_n = N k_B \) where \(N \) is the number of particles making up the object. If we consider a solar mass black hole, and suppose that it is made up exclusively of ionized hydrogen, we can get an estimate of the energy. The number of particles in such an object is

\[N = 2 \frac{M_s}{M_H} \]

(2)

where \(M_H \) is the mass of a hydrogen atom, and the factor of 2 accounts for 2 particles (electron + proton) per atom.

The ratio \(S / N k_B \) is then

\[\frac{S}{N k_B} = \frac{4\pi G M_s M_H}{2\hbar} \]

(3)

In [GR units], this is a dimensionless quantity, since \(\hbar \) has dimensions of kg m and \(G \) has dimensions of m kg\(^{-1}\). In GR units, the values are

\[\hbar = 3.5153 \times 10^{-43} \text{ kg m} \]

(4)

\[G = 7.426 \times 10^{-28} \text{ m kg}^{-1} \]

(5)

\[M_s = 1.989 \times 10^{30} \text{ kg} \]

(6)

\[M_H = 1.66 \times 10^{-27} \text{ kg} \]

(7)

So we get

\[\frac{S}{N k_B} = 4.38 \times 10^{19} \]

(8)
The entropy of a black hole is vastly more per particle than in 'normal' matter.