CHRISTOFFEL SYMBOLS: SYMMETRY

Link to: physicspages home page.
To leave a comment or report an error, please use the auxiliary blog.
Reference: Moore, Thomas A., A General Relativity Workbook, University Science Books (2013) - Chapter 17; Box 17.3.
Post date: 22 Dec 2013.

The Christoffel symbols are defined in terms of the basis vectors in a given coordinate system as:

\[\frac{\partial e_i}{\partial x^j} = \Gamma^k_{ij} e_k \]

(1)

Remember that the basis vectors \(e_i \) are defined so that

\[ds^2 = ds \cdot ds \]

(2)

\[= (dx^i e_i) \cdot (dx^j e_j) \]

(3)

\[= e_i \cdot e_j dx^i dx^j \]

(4)

\[\equiv g_{ij} dx^i dx^j \]

(5)

In a locally flat frame using rectangular spatial coordinates, the basis vectors \(e_i \) are all constants, so from \([1] \) all the Christoffel symbols must be zero: \(\Gamma^k_{ij} = 0 \).

Now let’s look at the second covariant derivative of a scalar field \(\Phi \):

\[\nabla_i \nabla_j \Phi = \nabla_i (\partial_j \Phi) \]

(6)

\[= \partial_i \partial_j \Phi - \Gamma^k_{ij} \partial_k \Phi \]

(7)

where in \([6]\) we used rule 1 for the covariant derivative: the covariant derivative of a scalar is the same as the ordinary derivative.

In the locally flat frame, this equation reduces to

\[\nabla_i \nabla_j \Phi = \partial_i \partial_j \Phi \]

(8)

Since the covariant derivative is a tensor, this is a tensor equation, and since ordinary partial derivatives commute, this equation is the same if we swap the indices \(i \) and \(j \). Tensor equations must have the same form in all coordinate systems, so this implies that \([7]\) must also be invariant if we
swap i and j. This means that the Christoffel symbols are symmetric under exchange of their two lower indices:

$$\Gamma^k_{ij} = \Gamma^k_{ji}$$

(9)

At first glance, this seems wrong, since from the definition this symmetry implies that

$$\frac{\partial e_i}{\partial x^j} = \frac{\partial e_j}{\partial x^i}$$

(10)

In 2-D polar coordinates, if we take the usual unit vectors \hat{r} and $\hat{\theta}$ then both these vectors are constants as we change r and both of them change when we change θ, so it’s certainly not true that $\partial \hat{r}/\partial \theta = \partial \hat{\theta}/\partial r$, for example. However, remember that the basis vectors we’re using are not the usual unit vectors; rather they are defined so that condition is true. In polar coordinates, we have

$$ds^2 = dr^2 + r^2 d\theta^2$$

(11)

so

$$e_r = \hat{r} = \cos \theta \hat{x} + \sin \theta \hat{y}$$

(12)

$$e_\theta = r \hat{\theta} = -r \sin \theta \hat{x} + r \cos \theta \hat{y}$$

(13)

For the derivatives, we have

$$\frac{\partial e_r}{\partial \theta} = -\sin \theta \hat{x} + \cos \theta \hat{y} = \hat{\theta}$$

(14)

$$\frac{\partial e_\theta}{\partial r} = -\sin \theta \hat{x} + \cos \theta \hat{y} = \hat{\theta}$$

(15)

Thus the condition is actually satisfied here.

Pingbacks

Pingback: [Christoffel symbols for Schwarzschild metric](#)

Pingback: [Christoffel symbols in terms of the metric tensor](#)

Pingback: [Gravitoelectric and gravitomagnetic densities](#)