As an example of the Riemann tensor in 2-d curved space we can use our old standby of the surface of a sphere. As usual, we need the Christoffel symbols and we get them by comparing the two forms of the geodesic equation.

\[\frac{d}{d\tau} \left(g_{aj} \dot{x}^j \right) - \frac{1}{2} \partial_a g_{ij} \dot{x}^i \dot{x}^j = 0 \]

(1)

\[\ddot{x}^m + \Gamma^m_{ij} \dot{x}^i \dot{x}^j = 0 \]

(2)

where as usual a dot denotes a derivative with respect to proper time \(\tau \).

For a sphere, the interval is

\[ds^2 = r^2 d\theta^2 + r^2 \sin^2 \theta d\phi^2 \]

(3)

Note that \(r \) (the radius of the sphere) is a constant here. From (1) we get, with \(a = \theta \):

\[r^2 \ddot{x}^j - r^2 \sin \theta \cos \theta \dot{\phi}^2 = 0 \]

(4)

Dividing through by \(r^2 \) and comparing with (2) we get

\[\Gamma^\theta_{\phi\phi} = -\sin \theta \cos \theta \]

(5)

\[\Gamma^\theta_{\theta\phi} = \Gamma^\theta_{\phi\theta} = 0 \]

(6)

With \(a = \phi \) we have

\[2r^2 \sin \theta \cos \theta \dot{\theta} \dot{\phi} + r^2 \sin^2 \theta \ddot{\phi} = 0 \]

(7)

\[2 \cot \theta \dot{\theta} \dot{\phi} + \ddot{\phi} = 0 \]

(8)

\[\Gamma^\phi_{\theta\phi} = \Gamma^\phi_{\phi\theta} = \cot \theta \]

(9)

\[\Gamma^\phi_{\theta\theta} = \Gamma^\phi_{\phi\phi} = 0 \]

(10)
RIEMANN TENSOR FOR SURFACE OF A SPHERE

We can use these results to get the Riemann tensor. Unfortunately, in the form $R^a_{\ bcd}$, the Riemann tensor doesn’t have all the symmetries of the form R_{abcd}, so if we want the latter form, we need to work out the former form first and then use

\[R_{abcd} = g_{af} R^f_{bced} \]

\[= g_{af} \left(\partial_c \Gamma^f_{db} - \partial_d \Gamma^f_{cb} + \Gamma^k_{db} \Gamma^f_{ck} - \Gamma^k_{cb} \Gamma^f_{kd} \right) \]

Although we know there is only one independent component in 2-d, we can work out all four non-zero components to see how the calculations go.

\[R_{\theta\phi\theta\phi} = g_{\theta f} R^f_{\phi\theta\phi} \]

\[\quad = g_{\theta \theta} R^0_{\phi \theta \phi} \]

\[\quad = r^2 \left(\partial_\theta \Gamma^\theta_{\phi \phi} - \partial_\phi \Gamma^\phi_{\theta \phi} + \Gamma^k_{\phi \phi} \Gamma^\phi_{\theta k} - \Gamma^k_{\theta \phi} \Gamma^\phi_{k \phi} \right) \]

\[\quad = r^2 \left(\sin^2 \theta - \cos^2 \theta - 0 + 0 + \cos^2 \theta \right) \]

\[\quad = r^2 \sin^2 \theta \]

\[R_{\theta\phi\theta\theta} = g_{\theta \theta} R^\theta_{\phi \theta \theta} \]

\[\quad = r^2 \left(\partial_\theta \Gamma^\theta_{\phi \theta} - \partial_\phi \Gamma^\phi_{\theta \theta} + \Gamma^k_{\phi \theta} \Gamma^\phi_{\theta k} - \Gamma^k_{\theta \phi} \Gamma^\phi_{k \theta} \right) \]

\[\quad = -R_{\theta\phi\theta\phi} \]

\[\quad = -r^2 \sin^2 \theta \]

\[R_{\phi\theta\theta\phi} = g_{\phi \phi} R^\phi_{\theta \theta \phi} \]

\[\quad = r^2 \sin^2 \theta \left(\partial_\phi \Gamma^\phi_{\theta \theta} - \partial_\theta \Gamma^\theta_{\phi \phi} + \Gamma^k_{\phi \phi} \Gamma^\phi_{\theta k} - \Gamma^k_{\phi \theta} \Gamma^\phi_{k \phi} \right) \]

\[\quad = r^2 \sin^2 \theta \left(- \frac{1}{\sin^2 \theta} - 0 + 0 + \frac{\cos^2 \theta}{\sin^2 \theta} \right) \]

\[\quad = -r^2 \sin^2 \theta \]

\[R_{\phi\theta\phi\theta} = g_{\phi \phi} R^\phi_{\theta \phi \theta} \]

\[\quad = r^2 \sin^2 \theta \left(\partial_\phi \Gamma^\phi_{\theta \phi} - \partial_\theta \Gamma^\theta_{\phi \phi} + \Gamma^k_{\phi \phi} \Gamma^\phi_{\theta k} - \Gamma^k_{\phi \theta} \Gamma^\phi_{k \phi} \right) \]

\[\quad = -R_{\phi\theta\phi\theta} \]

\[\quad = r^2 \sin^2 \theta \]

Finally, we can calculate one of the other components to verify that it’s zero.
Riemann Tensor for Surface of a Sphere

\[R_{\theta\theta\theta\theta} = g_{\theta\theta} R_{\theta\theta}^\theta \] (30)

\[= r^2 \left(\partial_\theta \Gamma_{\theta\theta}^\theta - \partial_\theta \Gamma_{\theta\theta}^\theta + \Gamma_{\theta\theta}^k \Gamma_{\theta\theta}^\theta - \Gamma_{\theta\theta}^\theta \Gamma_{\theta\theta}^\theta \right) \] (31)

\[= 0 \] (32)

Pingbacks

Pingback: Riemann tensor for 3-d spherical coordinates